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Thermal and vacuum friction acting on rotating particles
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We study the stopping of spinning particles in vacuum. A torque is produced by fluctuations of the vacuum
electromagnetic field and the particle polarization. Expressions for the frictional torque and the power radiated by
the particle are obtained as a function of rotation velocity and the temperatures of the particle and the surrounding
vacuum. We solve this problem following two different approaches: (i) a semiclassical calculation based upon
the fluctuation-dissipation theorem (FDT), and (ii) a fully quantum-mechanical theory within the framework of
quantum electrodynamics, assuming that the response of the particle is governed by bosonic excitations such as
phonons and plasmons. Both calculations lead to identical final expressions, thus confirming the suitability of
the FDT to deal with problems that are apparently out of equilibrium, and also providing comprehensive insight
into the physical processes underlying thermal and vacuum friction. We adapt the quantum-mechanical theory to
describe particles whose electromagnetic response is produced by fermionic excitations. Furthermore, we extend
our FDT formalism to fully account for magnetic polarization, which dominates friction when the particle is a
good conductor. Finally, we present numerically calculated torques and stopping times for the relevant cases of
graphite and gold nanoparticles.
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I. INTRODUCTION

The absoluteness of rotational motion, first demonstrated
by Newton’s bucket experiment, emerges in numerous elec-
trodynamic phenomena, for example, through interferometry
(Sagnac effect [1]) and light emission (rotational frequency
shift [2,3]). Likewise, the rotation of charged objects (e.g.,
electric [4] and magnetic [5] dipoles) produces radiation
emission, and as a result, also reaction torques [6]. More
surprisingly, the angular momentum carried by light can
be transformed into mechanical rotation of neutral particles
[7,8], so the question arises, is the reverse possible? Does a
homogeneous, neutral particle emit light simply by rotating?

Accelerated neutral objects are known to produce so-called
Casimir radiation by dynamical changes in the boundary
conditions of the electromagnetic fields associated to photon
states [9,10]. A similar effect is at the origin of noncontact
friction between objects set in relative uniform motion [11,12].
The case of two planar homogeneous surfaces, which has
recently generated a heated debate [13], is particularly striking
because no perceptible changes in physical boundaries are
associated to parallel relative displacements. A related instance
is a spinning sphere, in which vacuum and thermal friction
would constitute a strong test of the absolute character of
rotational motion.

The study of such a rotating system is the main objective of
this paper. In particular, we investigate the friction experienced
by rotating, neutral particles due to the interaction with the
vacuum and thermal electromagnetic field. For this purpose
we first follow a semiclassical approach as sketched in a previ-
ous publication [14], based upon the fluctuation-dissipation
theorem (FDT) [15,16]. This formalism allows us to find
analytical expressions for both the frictional torque and the
power radiated by the particle. Although the semiclassical
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model is completely rigorous and unambiguous, one could
question the validity of the FDT for a system that is out
of mechanical equilibrium. In order to clarify this point,
we develop a fully quantum-mechanical (QM) theory, in
which the electromagnetic response of the particle is governed
by bosonic excitations such as phonons and plasmons. The
results of both the semiclassical and the QM approaches are
in complete agreement, thus allowing us to obtain deeper
understanding of the physical processes underlying thermal
and vacuum friction. For instance, the QM approach provides
us with a solid argument to predict, within the limits of
our model, the absence of friction in nonabsorbing spherical
particles possessing a large optical gap compared to the
rotation and the thermal-radiation frequencies. In contrast,
particles made of lossy materials such as metals undergo
friction even at zero temperature, unlike what has been
previously predicted [17].

This paper is organized as follows. We derive the thermal
and vacuum friction from the semiclassical FDT approach
in Sec. II. A fully QM approach is presented and developed
in Sec. III for a particle characterized by bosonic excitations.
Section IV is devoted to showing the equivalence of both
approaches. The quantum theory is extended in Sec. V to
deal with fermionic excitations, such as those of a two-
level molecule. In Sec. VI, we supplement our semiclassical
formalism to incorporate magnetic polarization, and we offer
a comparison of the relative contributions of electric and
magnetic responses. Numerical results of the torque and the
stopping time are given for graphite and gold nanoparticles.
Finally, the main conclusions are summarized in Sec. VII. We
use Gaussian electromagnetic units, unless otherwise stated.

II. FLUCTUATION-DISSIPATION-THEOREM APPROACH

We consider the system described in Fig. 1, which consists
of an isotropic particle at temperature T1 placed in vacuum at
temperature T0. The particle is rotating around its z axis with
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FIG. 1. (Color online) Description of the system under study.
The particle is at temperature T1 and rotates with angular frequency
! around the z axis. The surrounding vacuum is at temperature T0.
The particle experiences a torque M and emits a power P rad in the
form of radiation.

angular frequency ! and interacts with the radiation field in
its surroundings. This interaction produces a torque M on the
particle, and it gives rise to radiation with a net power P rad.
The particle radius a is assumed to be small compared to the
wavelength of the involved radiation, which is controlled by the
temperatures T0 and T1 (through the thermal radiation profile)
and the rotation frequency !. This approximation implies that
both !a/c and kBTja/ch̄ are small compared to unity [18],
thus allowing us to describe the electromagnetic response of
the particle via its frequency-dependent dipolar polarizability.

A. Frictional torque

In the calculation of the torque acting on a rotating
particle we have to include two separate contributions: (i) the
fluctuations of the particle dipole, and (ii) the fluctuations of
the electromagnetic field. The torque produced by an electric
field E on a dipole p is simply given by p × E. We can use
this result to write the torque on our particle along the rotation
axis ẑ as

M = 〈p(t) × E(r0,t)〉 · ẑ,

where 〈 〉 represents the average over fluctuations and the field
is evaluated at the position of the particle r = r0. We can
separate the two contributions just described in the following
way:

M = 〈pfl(t) × Eind(r0,t) + pind(t) × Efl(r0,t)〉 · ẑ
= Mp + ME. (1)

The first term accounts for the fluctuations of the particle dipole
that correlate with the resulting induced field, while the second
one involves field fluctuations and the dipole that they induce.
There are no cross terms involving fluctuations of both the
dipole and the field because they belong to different physical
systems, so that they are uncorrelated. It is convenient to work
in frequency space ω, defined via the Fourier transform

E(t) = 1
2π

∫ ∞

−∞
dωE(ω)e−iωt

for the electric field, and similarly for other quantities. This
allows us to express the induced field of Eq. (1) in terms of the

fluctuating dipole by using the electromagnetic Green tensor
G:

Eind(r,ω) = G(r,r0,ω) · pfl(ω). (2)

The Cartesian components of G in vacuum are given by

Gij (r,r0,ω) = exp(ikR)
R3

[
(k2R2 + ikR − 1)δij

− (k2R2 + 3ikR − 3)
RiRj

R2

]
,

where R = r − r0 and k = ω/c. In a similar way, the induced
dipole can be written in terms of the fluctuating field with the
help of the particle polarizability tensor,

pind(ω) = α(ω) · Efl(r0,ω). (3)

For simplicity, we assume particles with axial symmetry,
for which the nonvanishing components of the polarizability
tensor can be written as

αxx(ω) = αyy(ω) = α⊥(ω),

αzz(ω) = α‖(ω).

These expressions, together with Eq. (1), permit us to write
the torque as the sum of two terms, one of them quadratic with
respect to the fluctuating dipole and the other one quadratic
with respect to the fluctuating field. These quadratic terms
have to be averaged over fluctuations using the symmetrized
version of the FDT [14–16], which in our case reads

〈
pfl

i (ω)pfl
j (ω′)

〉
= 4πh̄δ(ω + ω′)

× Im{αij (ω)}
(
n1(ω) + 1

2

)
(4)

for the dipole fluctuations and
〈
Efl

i (r,ω)Efl
j (r′,ω′)

〉
= 4πh̄δ(ω + ω′)

× Im{Gij (r,r′,ω)}
(
n0(ω) + 1

2

)
(5)

for the electric-field fluctuations. The temperatures of the
particle (T1) and the vacuum (T0) enter these expressions
through the Bose-Einstein distribution functions

nl(ω) = 1
eh̄ω/kBTl − 1

. (6)

We first calculate the term associated to the dipole fluctua-
tions,

Mp =
〈
pfl(t) × Eind(r0,t)

〉
· z

=
∫ ∞

−∞

dωdω′

(2π )2 e−i(ω+ω′)t 〈pfl(ω) × Eind(r0,ω
′)〉 · z. (7)

Using Eq. (2) to write the induced field in terms of the
fluctuating dipole, Eq. (7) becomes

Mp =
∫ ∞

−∞

dωdω′

(2π )2
e−i(ω+ω′)t[pfl

x (ω)Gyx(r0,r0,ω
′)pfl

x (ω′)

+pfl
x (ω)Gyy(r0,r0,ω

′)pfl
y (ω′) − pfl

y (ω)Gxx(r0,r0,ω
′)

×pfl
x (ω′) − pfl

y (ω)Gxy(r0,r0,ω
′)pfl

y (ω′)
]
. (8)

So far we have expressed the fluctuating dipoles in the
laboratory frame (see Fig. 2), but we need to transform them
to the rotating frame in order to average over fluctuations
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FIG. 2. Definition of the rotating frame (dashed lines) and the
laboratory frame (solid lines). The former rotates with angular
frequency !.

via the FDT. The physical reason for this is that the particle
polarizability can only be applied in the rotating frame, in
which the electronic and vibrational excited states that produce
polarization are well defined. Furthermore, we assume that
those states are unaffected by the rotational motion in the rest
frame of the particle. We can express the laboratory-frame
dipoles p in terms of the dipoles in the rotating frame p′ in the
following way:

px(ω) = 1
2 [p′

x(ω+) + ip′
y(ω+) + p′

x(ω−) − ip′
y(ω−)],

py(ω) = 1
2 [−ip′

x(ω+) + p′
y(ω+) + ip′

x(ω−) + p′
y(ω−)], (9)

pz(ω) = p′
z(ω),

where we have employed the compact notation ω± = ω ± !.
Introducing Eq. (9) into Eq. (8) and averaging over fluctuations
via the FDT [Eq. (4)], we obtain the expression

Mp = ih̄

2π

∫ ∞

−∞
dωdω′e−i(ω+ω′)t

× [Gxx(r0,r0,ω
′) + Gyy(r0,r0,ω

′)]

×
[
δ(ω+ + ω′

−)Im{α⊥(ω+)}
(

n1(ω+) + 1
2

)

− δ(ω− + ω′
+)Im{α⊥(ω−)}

(
n1(ω−) + 1

2

)]
.

Now, performing the integral over ω′, taking into
account causality in the Green tensor [i.e., G(r,r′, − ω) =
G∗(r,r′,ω)], and noticing that nl(ω) + 1/2 is an odd function
of ω, we find

Mp = h̄

π

∫ ∞

0
dω Im{Gxx(r0,r0,ω) + Gyy(r0,r0,ω)}

×
[

Im{α⊥(ω+)}
(

n1(ω+) + 1
2

)

− Im{α⊥(ω−)}
(

n1(ω−) + 1
2

)]
. (10)

Now, from the definition of the Green tensor, one has

lim
|r−r′|→0

Im{Gij (r,r′,ω)} = 2
3

ω3

c3
δij , (11)

and using this expression in Eq. (10) we obtain

Mp = 4h̄
3πc3

∫ ∞

0
dωω3

[
Im{α⊥(ω+)}

(
n1(ω+) + 1

2

)

− Im{α⊥(ω−)}
(

n1(ω−) + 1
2

)]
. (12)

Equation (12) only contains the torque produced due to
electric-dipole fluctuations. Coming back to Eq. (1), we still
have to calculate its second term, which accounts for the torque
associated to field fluctuations:

ME = 〈pind(t) × Efl(r,t)〉 · z

=
∫ ∞

−∞

dωdω′

(2π )2
e−i(ω+ω′)tpind(ω) × Efl(r,ω′) · z. (13)

In order to express the induced dipole in terms of the fluctuating
field, we need to write the dipole in the rotating frame before
we can apply Eq. (3), and then go back to the laboratory
frame. This procedure leads to an effective polarizability for
the rotating particle (see the Appendix), the components of
which are

αeff
xx (ω) = αeff

yy (ω) = 1
2

[α⊥(ω+) + α⊥(ω−)] ,

αeff
xy (ω) = −αeff

yx (ω) = i

2
[α⊥(ω+) − α⊥(ω−)] , (14)

αeff
zz (ω) = α‖(ω).

Using this effective polarizability, Eq. (13) becomes

ME =
∫ ∞

−∞

dωdω′

(2π )2
e−i(ω+ω′)t [αeff

xx (ω)Efl
x (r,ω)Efl

y (r,ω′)

+ αeff
xy (ω)Efl

y (r,ω)Efl
y (r,ω′) − αeff

yx (ω)Efl
x (r,ω)Efl

x (r,ω′)

− αeff
yy (ω)Efl

y (r,ω)Efl
x (r,ω′)

]
.

This expression is already prepared to perform the average
over field fluctuations using the FDT [Eq. (5)]. We find

ME = 2h̄
3πc3

∫ ∞

−∞
dωdω′e−i(ω+ω′)tω3[αeff

xy (ω) − αeff
yx (ω)

]

× δ(ω + ω′)
(

n0(ω) + 1
2

)
, (15)

where we have also used Eq. (11). Now we can perform
the integral over ω′. Using the causality property of the
polarizability α(−ω) = α∗(ω) and the parity of the rest of
the integrand in Eq. (15), we obtain

ME = 4h̄
3πc3

∫ ∞

0
dωω3[Im{α⊥(ω−)} − Im{α⊥(ω+)}]

×
(

n0(ω) + 1
2

)
. (16)

Finally, the total torque resulting from the sum of Eqs. (12)
and (16) reduces to

M = − 4h̄
3πc3

∫ ∞

0
dωω3Im{α⊥(ω−)}[n1(ω−) − n0(ω)]

+ 4h̄
3πc3

∫ ∞

0
dωω3Im{α⊥(ω+)}[n1(ω+) − n0(ω)]. (17)

A more compact expression can be found by playing with the
integration limits:

M = − 4h̄
3πc3

∫ ∞

−∞
dωω3Im{α⊥(ω−)}[n1(ω−) − n0(ω)]. (18)

This expression makes it clear that, as expected, the torque
vanishes for nonrotating nanoparticles.
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The generalization of Eq. (18) to the case of anisotropic
particles with principal axes along x, y, and z [i.e., αxx(ω) +=
αyy(ω)] is straightforward, but it involves lengthy algebraic
manipulations. We find

M = − 4h̄
3πc3

∫ ∞

−∞
dωω3 1

2
Im{αxx(ω−) + αyy(ω−)}

× [n1(ω−) − n0(ω)]

and hence Eq. (18) is recovered, but we find α⊥(ω) as the
average of the polarizabilities along the x and y axes.

B. Net radiated power

The interaction between the rotating particle and the
surrounding field involves photon exchanges that lead to a
net radiated power. We calculate this power here following a
procedure similar to the one used for the torque. First we write

P rad = −
〈
Eind(r,t) · ∂pfl(t)

∂t
+ Efl(r,t) · ∂pind(t)

∂t

〉

= P rad
p + P rad

E . (19)

The first term on the right-hand side of Eq. (19) accounts
for the power radiated by the particle due to fluctuations in
its polarization, while the second one describes the power
dissipated in the particle due to field fluctuations. The first
term can be rewritten as

P rad
p = −

〈
Eind(r,t) · ∂pfl(t)

∂t

〉

=
∫ ∞

−∞

dωdω′

(2π )2
e−i(ω+ω′)t (iω′)Eind(r,ω′) · pfl(ω′).

Now, we express the induced field in terms of the fluctuating
dipole using Eq. (2). Then, the dipole can be written in the
rotating frame with the help of Eq. (9) and we can apply the
FDT [Eq. (4)] to obtain

P rad
p = − ih̄

2π

∫ ∞

−∞
dωω

{
[Gxx(r,r,ω) + Gyy(r,r,ω)]

×
[

Im{α⊥(ω+)}
(

n1(ω+) + 1
2

)

+ Im{α⊥(ω−)}
(

n1(ω−) + 1
2

)]

+ 2Gzz(r,r,ω)
[

Im{α‖(ω)}
(

n1(ω) + 1
2

)]}
.

Notice that we have already integrated over ω′ and, although
the z component does not contribute to the torque, it does
radiate power.

Finally, using the symmetry properties of the Green tensor,
we can write

P rad
p = 4h̄

3πc3

∫ ∞

0
dωω4

[
Im{α⊥(ω+)}

(
n1(ω+) + 1

2

)

+ Im{α⊥(ω−)}
(

n1(ω−) + 1
2

)]

+ 4h̄
3πc3

∫ ∞

0
dωω4Im{α‖(ω)}

(
n1(ω) + 1

2

)
, (20)

where we have used Eq. (11). This result represents the power
radiated by the rotating particle due to the dipole fluctuations.

The remaining term of Eq. (19) represents the radiation
dissipated in the particle due to the fluctuations of the external
field, which can be written as

P rad
E = −

〈
Efl(r,t) · ∂pind(t)

∂t

〉

=
∫ ∞

−∞

dωdω′

(2π )2
e−i(ω+ω′)t (iω′)Efl(r,ω) · pind(ω′).

Using the effective polarizability [Eq. (14)], the FDT [Eq. (5)],
and Eq. (11), we find

P rad
E = − 2ih̄

3πc3

∫ ∞

−∞
dωω4[α∗

⊥(ω+) + α∗
⊥(ω−) + α∗

‖ (ω)]

×
(

n0(ω) + 1
2

)
, (21)

where we have already integrated over ω′. Using again the
causality of the polarizability and noticing that the integrand
is an odd function of ω, Eq. (21) becomes

P rad
E = − 4h̄

3πc3

∫ ∞

0
dωω4[Im{α⊥(ω+)} + Im{α⊥(ω−)}

+ Im{α‖(ω)}]
(

n0(ω) + 1
2

)
. (22)

Finally, the net power radiated by the particle, which results
from the difference between the power radiated by dipole
fluctuations [Eq. (20)] and the power dissipated by the
fluctuating field [Eq. (22)], can be written as

P rad = 4h̄
3πc3

∫ ∞

0
dωω4Im{α⊥(ω−)}[n1(ω−) − n0(ω)]

+ 4h̄
3πc3

∫ ∞

0
dωω4Im{α⊥(ω+)}[n1(ω+) − n0(ω)]

+ 4h̄
3πc3

∫ ∞

0
dωω4Im{α‖(ω)}[n1(ω) − n0(ω)]. (23)

A more compact expression is obtained by playing with the
integration limits:

P rad = 4h̄
3πc3

∫ ∞

−∞
dωω4Im{α⊥(ω−)}[n1(ω−) − n0(ω)]

+ 2h̄
3πc3

∫ ∞

−∞
dωω4Im{α‖(ω)}[n1(ω) − n0(ω)]. (24)

It should be noted that even if the particle is not rotating
there is a net radiated power when the particle and vacuum
temperatures are different.

As in the case of the torque, we can generalize this result to
anisotropic particles, and we also find that Eq. (24) is still valid
if α⊥(ω) is understood as the average of the polarizabilities
along the x and y axes.

III. QUANTUM-MECHANICAL APPROACH

One can question the suitability of the FDT to deal with
a system that is out of dynamical equilibrium, such as our
rotating particle when it is experiencing friction. We clarify
this point and achieve deeper understanding of vacuum and
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thermal friction by solving the problem within the framework
of quantum electrodynamics. As we show next, this procedure
leads to analytical expressions for the torque and the radiated
power that are identical with the ones obtained from the FDT.

The rotation of the particle around the z axis can be
described by the Hamiltonian

Ĥrot =
L2

z

2I
= − h̄2

2I

∂2

∂ϕ2
,

where I is the particle moment of inertia. Accordingly, the
rotational part of the eigenfunction can be written

(R(ϕ,t) = 1√
2π

eimϕe(−ih̄m2/2I )t , (25)

which describes a rotation of frequency ! = h̄m/I , as ob-
tained from the condition of the stationary phase [19]. This
wave function satisfies the equation

Ĥrot(rot(ϕ) = Erot(rot(ϕ),

where Erot = h̄2m2/2I is the rotational energy.
The complete system (particle plus field) can be adequately

described by states |kjmli〉, where kj is the number of particle
bosonic excitations of energy εj in the particle internal state
(e.g., phonons or plasmons), m is the rotational azimuthal
number, and li describes the electromagnetic field state through
the number of photons in mode i. The energy of this state is
kjεj + h̄2m2/2I + lih̄ωi .

Using Fermi’s “golden rule” [20] to account for the particle-
radiation coupling to first order, the transition probabilities
between states like the one defined above can be written

P|k′
j m

′l′i 〉←|kj mli 〉 = 2π

h̄
| 〈k′

jm
′l′i | ĤI |kjmli〉 |2

× δ

(
*kjεj + h̄2 m′2 − m2

2I
+ *lih̄ωi

)
,

(26)

where *kj = k′
j − kj and *li = l′i − li . Here, ĤI is the

Hamiltonian that describes the interaction between the particle
and the radiation field. For small particles, ĤI is well described
by the dipolar interaction Hamiltonian

ĤI = −p̂ · Ê(r).

For bosonic excitations (e.g., phonons or plasmons) the dipole
operator p̂ can be written in terms of particle bosonic creation
and annihilation operators b̂† and b as [21]

p̂ =
∑

j

pj [b̂j + b̂
†
j ], (27)

where pj is the dipole moment associated to the bosonic mode
j [22]. Likewise, the electric-field operator can be expressed
in terms of photon creation and annihilation operators â† and
a as

Ê(r) = i
∑

kσ

√
2πh̄ωk

V
ekσ [âkσ eik·r − â

†
kσ e−ik·r],

where V is the quantization volume, ekσ is the mode polariza-
tion vector, and the sum runs over photon wave vectors k and
polarizations σ [i.e., the photon index i in Eq. (26) contains
the photon wave vector and the polarization].

In the dipolar approximation, we can take eik·r ≈ 1, which,
together with Eq. (25), allows us to write the relation

〈k′
jm

′l′i | HI |kjmli〉 = −i

√
2πh̄ωi

V
N

×
∫

(pj · ei)
ei(m−m′)ϕ

2π
dϕ (28)

for the transition matrix elements. Here, N is the matrix
element corresponding to the bosonic and photonic degrees of
freedom, which produce four possible transitions depending
on the change of the bosonic (*kj = ±1) and photonic
(*li = ±1) numbers. More precisely,

〈kj − 1li − 1| b̂j âi |kj li〉 → N =
√

kj li , (29)

〈kj + 1li + 1| b̂†j â
†
i |kj li〉 → N = −

√
(kj + 1)(li + 1), (30)

〈kj + 1li − 1| b̂†j âi |kj li〉 → N =
√

(kj + 1)li , (31)

〈kj − 1li + 1| b̂j â
†
i |kj li〉 → N = −

√
kj (li + 1). (32)

Now, the integration over ϕ in Eq. (28) requires expressing the
dipole moment in the particle frame using the relations

px = p′
x cos ϕ − p′

y sin ϕ,

py = p′
x sin ϕ + p′

y cos ϕ, (33)

pz = p′
z,

where the primed (nonprimed) quantities refer to the rotating
(lab) frame. From here we have

〈k′
jm

′l′i | HI |kjmli〉 = −i

√
2πh̄ωi

V
N

1
2

× {[pj,x(δm,m′+1 + δm,m′−1)

+ ipj,y(δm,m′+1 − δm,m′−1)]ei,x

+ [−ipj,x(δm,m′+1 − δm,m′−1)

+pj,y(δm,m′+1 + δm,m′−1)]ei,y

+ 2pj,zδm,m′ei,z}, (34)

where ei,j are the Cartesian components of ei . The Kronecker
delta functions appear as a result of the ϕ integration [see
Eqs. (28) and (33)]. From these equations we conclude that
there is no contribution to the torque coming from the dipole
component along the rotation axis z, because it conserves the
rotation number m.

A. Torque

Each of the four possible transitions discussed in Eqs. (29)–
(32) contributes to the torque through the rate of change in the
rotational energy. More precisely,

M = 1
!

dErot

dt

= −
∑

j,m′,i

±εj ± h̄ωi

!
P|kj ±1m′li±1〉←|kj mli 〉,

where the signs depend on the particular transition, according
to the energy conservation imposed by the δ-function of
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Eq. (26), and we are summing over all possible final states.
Replacing the sum over the photonic states by an integral,∑

i →
∫

dS
∑

σ

[
V /(2π )3

] (
1/c3

) ∫ ∞
0 ω2dω, and using

Eq. (34), we find

M = −2h̄
3!c3

∑

j,m′

∫ ∞

0
dωN2ω3(±εj ± h̄ω)

× {|pj,x + ipj,y |2δm′,m−1 + |pj,x − ipj,y |2δm′,m+1}

× δ

(
±εj ± h̄ω + h̄2 m′2 − m2

2I

)
. (35)

The factors δm′,m±1 allow us to write

h̄2 (m′2 − m2)
2I

= h̄2 (m ± 1)2 − m2

2I
≈ ±h̄! (36)

(with ! = h̄m/I ), where we use the nonrecoil
approximation (|m| / 1). Using this expression and
defining p2

j = |pj,x ± ipj,y |2, we can rewrite Eq. (35) as

M = − 4h̄
3c3

∑

j

∫ ∞

0
dωN2ω3p2

j

× [δ(±εj ± h̄ω − h̄!) − δ(±εj ± h̄ω + h̄!)], (37)

where a factor of 2 has been included to account for mode
degeneracy in the sum over j [22], so that j runs now over
dipole excitations along either x or y in the axially symmetric
particle. Finally, the total torque is the sum of the contributions
from the four transitions described in Eqs. (29)–(32).

At this point, we assume that both the radiation field and the
particle are in thermodynamic equilibrium at temperatures T0
and T1, respectively. Then, we have to average over the number
of bosons kj and photons li in the system, which appear in the
factor N . Using the Bose-Einstein statistics,

〈kj 〉 = 1
eεj /kBT1 − 1

= n1(εj )

and

〈li〉 = 1
eh̄ωi /kBT0 − 1

= n0(ωi), (38)

the averaged torque reduces to

M = 4h̄
3c3

∑

j

∫ ∞

0
dωω3p2

j

× {[δ(εj − h̄ω+) − δ(εj + h̄ω+)][n1(ω+) − n0(ω)]

− [δ(εj − h̄ω−) − δ(εj + h̄ω−)]

× [n1(ω−) − n0(ω)]}. (39)

B. Net radiated power

The net radiated power can be calculated in a way similar
to the torque. Once again, there are four separate contributions
associated to the transitions of Eqs. (29)–(32). Two of them
involve the emission of a photon (with *li = 1 and *kj =
±1), thus producing a positive contribution, whereas the other
two describe photon absorption (*li = −1 and *kj = ±1),
giving rise to a negative contribution. The net radiated power

can then be written

P rad =
∑

j,m′,i

h̄ωi

[
P|kj +1m′li+1〉←|kj mli 〉 + P|kj −1m′li+1〉←|kj mli 〉

−P|kj +1m′li−1〉←|kj mli 〉 − P|kj −1m′li−1〉←|kj mli 〉
]
. (40)

Following the same steps as in Eqs. (35)–(39), we find

P rad = 4h̄
3c3

∑

j

∫ ∞

0
dωω4p2

j

× {[n1(ω+) − n0(ω)][δ(εj − h̄ω+) − δ(εj + h̄ω+)]

+ [n1(ω−) − n0(ω)][δ(εj − h̄ω−) − δ(εj + h̄ω−)]

+ [n1(ω) − n0(ω)][δ(εj − h̄ω) − δ(εj + h̄ω)]}. (41)

It should be noted that, unlike the torque, the radiated power
contains a contribution from the dipole component parallel to
the rotation axis.

IV. EQUIVALENCE OF THE FLUCTUATION-DISSIPATION
THEOREM AND THE QUANTUM-MECHANICAL

APPROACHES

In order to compare the expressions for the torque and
the net radiated power obtained within the two different
approaches, we have to introduce the particle polarizability
α in the QM formalism. From the customary definition [23]

α(ω) =
∑

j

p2
j

[
1

εj − h̄ω − iγ
+ 1

εj + h̄ω + iγ

]
, (42)

and using the identity

∓δ(x) = 1
π

Im
{

1
x ± iγ

}
, (43)

where γ → 0+, we can write the imaginary part of the
polarizability as

Im {α(ω)} = π
∑

j

p2
j [δ(εj − h̄ω) − δ(εj + h̄ω)]. (44)

This allows us to directly recast the torque and the radiated
power given by Eqs. (39) and (41) into exactly the same form
as in Eqs. (17) and (23), respectively. The only difference
is that we have focused on isotropic particles in the QM
approach, although the generalization to anisotropic particles
can be easily done through the dipole moment of the bosonic
excitations pj [see Eq. (27)].

Therefore we find that the FDT and the QM approaches
lead to exactly the same results. An additional conclusion
from the QM derivation is that isotropic particles with
no allowed internal excitations (i.e., nonabsorbing particles)
cannot experience any torque, within the limits of our model.

V. QUANTUM-MECHANICAL APPROACH FOR
FERMIONIC SYSTEMS

In the QM derivation developed in Sec. III, we have
considered that the response of the particle to the external
field is mediated by bosonic excitations, such as phonons or
plasmons. Although such a model describes most situations en-
countered in practice, we find it very interesting to investigate
the vacuum and thermal friction acting on rotating systems
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whose electromagnetic response is governed by fermionic
excitations, such as, for instance, a two-level molecule (e.g., a
conjugated polymer with a strong dipole-active excitation). In
such systems the dipolar operator is given by

p̂ =
∑

j

pj [|gj 〉 〈ej | + |ej 〉 〈gj |],

where |gj 〉 and |ej 〉 are pairs of possible ground and excited
internal states, and pj is the dipole moment of the fermionic
excitation j .

Using this dipolar operator instead of Eq. (27), we can
calculate the torque and the radiated power following the same
procedure as in Sec. III. Once again, there are four possible
transitions resulting from the combination of a change in
the internal state (ground ↔ excited) and the absorption or
emission of one photon. The torque associated to each of these
transitions is given by Eq. (37), where N2 = li + 1 if a photon
is emitted and N2 = li if it is absorbed.

Assuming the vacuum field in thermodynamic equilibrium
at temperature T0, we take the average of li using the
Bose-Einstein distribution function [Eq. (38)]. Likewise, if the
particle is in thermodynamic equilibrium at temperature T1,
we have to weigh each possible transition with the probability
of being initially at the ground state or at the excited state. Such
probabilities are given by 1/(1 + eεj /kBT1 ) for the excited state
and eεj /kBT1/(1 + eεj /kBT1 ) for the ground state, where εj is the
energy that separates both states. From these considerations,
the frictional torque becomes

M = −4h̄
3c3

∑

j

∫ ∞

−∞
dωω3p2

j {δ(εj − h̄ω−) + δ(εj + h̄ω−)}

× [n1F (ω−) + 2n1F (ω−)n0(ω) − n0(ω)],

and similarly, the net radiated power reads

P rad = 4h̄
3c3

∑

j

∫ ∞

−∞
dωω4p2

j

{
[δ(εj − h̄ω−) + δ(εj + h̄ω−)]

× [n1F (ω−) + 2n0(ω)n1F (ω−) − n0(ω)]

+ 1
2

[δ(εj − h̄ω) + δ(εj + h̄ω)]

× [n1F (ω) + 2n0(ω)n1F (ω) − n0(ω)]
}
,

where n0(ω) is the Bose-Einstein distribution function given
in Eq. (6) and n1F is the Fermi-Dirac distribution function

n1F (ω) = 1
eh̄ω/kBT1 + 1

.

In contrast to the bosonic case [Eqs. (39) and (41)], the delta
functions in these expressions cannot be written in terms of
the imaginary part of the polarizability [Eq. (42)]. However, at
zero temperature T0 = T1 = 0, these formulas agree with the
bosonic expressions. The particle temperature for fermions
must be understood in the statistical sense, that is, either for a
particle containing many degenerate excitations with identical
dipoles or as a time average assuming negligible stopping
over many excitation and de-excitation cycles. More precisely,
the particle equilibrium temperature is determined by the
condition M! + P rad = 0. In particular, with the particle
hosting only one mode j = 0 and the vacuum at T0 = 0,

we obtain kBT1 = ε0/ ln{[(h̄! + ε0)3 + ε3
0 ]/(h̄! − ε0)3} for

h̄! > ε0, and T1 = 0 otherwise. This result concides with the
bosonic case under these conditions and it predicts a linear
dependence kBT1 ≈ h̄!/6 for h̄! / ε0.

VI. CONTRIBUTION OF MAGNETIC POLARIZATION

So far we have only considered the contribution to the
torque and the radiated power coming from electric polar-
ization of the particle, but the contribution resulting from
magnetic polarization can also play a role. Intuitively, one
can be inclined to ignore such contribution for small particles,
which have small magnetic polarizability, but we show below
that it can actually be dominant in metal particles of large
conductivity.

Figure 3 shows the imaginary part of the electric (black
curves) and magnetic (red curves) polarizabilities of graphite
(a) and gold (b) nanoparticles, with radii of 10 nm (broken
curves) and 100 nm (solid curves). They have been ob-
tained from the dipolar Mie scattering coefficients tE1 and
tM1 [24] using the relations αelec = (3c3/2ω3)tE1 and αmag =
(3c3/2ω3)tM1 . The dielectric functions of graphite and gold
have been taken from [25] and [26], respectively. The former
includes the effect of the finite size of the particle. From this
plot one can clearly observe that the imaginary part of the
electric polarizability governs the response of the graphite
nanoparticles almost over the whole range of frequencies under
consideration. However, the situation is completely reversed
in gold nanoparticles, for which the magnetic polarization
dominates the infrared spectral range [see Fig. 3(b)].
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FIG. 3. (Color online) Imaginary part of the electric (black
curves) and magnetic (red curves) polarizabilities of graphite
(a) and gold (b) nanoparticles of 10 nm (broken curves) and 100 nm
(solid curves) radius, obtained from the dipolar Mie coefficient. The
dielectric functions of graphite and gold have been taken from [25]
and [26], respectively.
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It is possible to derive analytical expressions for the
magnetic and electric polarizabilities in the low-frequency
limit, well below the interband transitions. The dielectric
function of metals can then be accurately described by the
Drude model in terms of the dc conductivity σ0:

ε ≈ i
4πσ0

ω
. (45)

(Incidentally, the real part of ε is negligible compared to the
imaginary part in the ω → 0 limit and its actual value is
irrelevant in the analysis that follows.) Using the small-radius
expansion of the Mie scattering coefficients (a/λ 2 1), we
find

αelec ≈ a3 ε − 1
ε + 2

and

αmag ≈ 2π2

15
a3

(a

λ

)2
(ε − 1).

Upon insertion of Eq. (45) into these expressions, the ratio of
the imaginary parts of these polarizabilities reduces to

Im{αmag}
Im{αelec}

≈ 8π2

45

(aσ0

c

)2
.

Hence the magnetic polarization becomes important at low
frequencies in particles of large conductivity. This is precisely
what we observe in Fig. 3(b) for gold nanoparticles (σ0 ≈
1.6 × 107 !−1m−1), in contrast to graphite nanoparticles
[σ0 = 2.3 × 104(2.0 × 105) !−1m−1 for a = 10(100) nm].

A. Magnetic contribution to the torque and the
net radiated power

The magnetic contribution to the torque can be obtained
from the expression

Mmag = 〈m(t) × H(r,t)〉 · z.

In a similar way, the net radiated power due to the magnetic
polarization reads

P rad
mag = −

〈
H(r,t) · ∂m(t)

∂t

〉
.

From these expressions, taking advantage of the symmetry
of the Maxwell equations [27], we can follow exactly the
same steps as in the derivation shown in Sec. II, just replacing
the electric dipole and fields by their magnetic counterparts.
Therefore the final expressions for the torque and the net
radiated power resulting from the contribution of the magnetic
polarization are exactly the same as the ones given in
Eqs. (18) and (24), respectively, where α must now be replaced
by the magnetic polarizability. There are not cross terms
between electric and magnetic polarizabilities.

Figure 4 shows the electric (black curves) and magnetic
(red curves) contributions to the torque acting on graphite
(a) and gold (b) nanoparticles as a function of temper-
ature (we assume that T1 = T0). Two different values of
the particle radius have been considered: 10 nm (broken
curves) and 100 nm (solid curves). In addition, the particles
are rotating with a frequency of ! = 104 Hz (the torque
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FIG. 4. (Color online) Electric (black curves) and magnetic (red
curves) contributions to the torque acting on graphite (a) and gold (b)
nanoparticles of 10 nm (broken curves) and 100 nm (solid curves)
radius for different temperatures (we take T1 = T0). The particles
are rotating with a frequency of 104 Hz. The blue lines (right scale)
show the relative weight of magnetic polarization contributing to the
torque.

is proportional to ! at this low rotation velocity). Both
contributions to the torque grow with temperature. The blue
curves in Fig. 4 (right scale) show the relative weight of
the contribution to the torque coming from magnetic polar-
ization. Such contribution is negligible in the 10-nm-radius
graphite nanoparticle [see Fig. 4(a)], although it becomes
noticeable for a radius of 100 nm at temperatures above
∼300 K. The situation is completely reversed in the gold
nanoparticles [see Fig. 4(b)], for which the magnetic contribu-
tion almost dominates the torque over the whole temperature
range, and only for temperatures above 300 K does the electric
contribution take comparatively significant values.

B. Stopping times of interstellar dust

In the common situation of low rotation frequencies
compared to the thermal energy (i.e., ! 2 kT /h̄, which
implies ! 2 21 GHz for a temperature of 1 K), and assuming
the particle to be at the same temperature as the vacuum
(T1 = T0), the torque [Eq. (18)] becomes linear in !:

M ≈ 4h̄
3πc3

!

∫ ∞

−∞
dωω3Im {α⊥(ω)} ∂n1(ω)

∂ω
.

Combining this result and Newton’s second law, we can write
the time evolution of the rotation frequency as

!(t) = !(0)e−t/τ ,
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FIG. 5. (Color online) Stopping times of graphite (solid curves)
and gold (broken curves) nanoparticles of 100 nm radius, with (black
curves) and without (red curves) inclusion of magnetic polarization.
Electric polarization dominates in graphite, so both black and red
curves almost coincide in that case. In contrast, electric polarization
is negligible in the case of gold.

where

τ = 3πc3I

−4h̄
∫ ∞
−∞ dωω3Im {α⊥(ω)} [∂n1(ω)/∂ω]

is the characteristic 1/e stopping time and I is the moment of
inertia.

Graphite particles are abundant in interstellar dust [28],
so they constitute a relevant case to study the stopping time
τ . The black solid curve in Fig. 5 shows the variation of
this parameter as a function of temperature for a graphite
particle of 100 nm radius. The stopping time ranges from
cosmic-scale values at low temperatures to much smaller times
at higher temperatures. Figure 5 shows the particle stopping
time including both electric and magnetic polarization (black
curves) compared to the value obtained by neglecting the
magnetic contribution (red curves). As expected from the
discussion of Sec. VI A, only the electric component is relevant
for graphite nanoparticles. For completeness, we include in
Fig. 5 the stopping time of gold nanoparticles (broken curves),
for which the magnetic contribution dominates the stopping
time nearly over the whole range of temperatures.

We have neglected here the variation of the particle
polarizability with temperature, which constitutes a minor
correction except at very high temperatures or when phase
transitions are involved. Furthermore, we have ignored the
effect of centrifugal forces on the particle response, which
should be negligible at moderate rotational frequencies. For
instance, the centrifugal energy of outer electrons in a 200-nm
gold nanoparticle is of the order of the Fermi energy only
above 1 THz rotation frequencies.

VII. CONCLUDING REMARKS

In this paper, we have developed a comprehensive semi-
classical model based upon the FDT to describe vacuum and
thermal friction acting on rotating particles. We have presented
analytical expressions both for the torque exerted on an axially
symmetric particle and for the net power that it radiates due to

friction. We have also generalized these results to the case of
anisotropic particles.

The semiclassical approach of Sec. I is in full agreement
with the QM derivation presented in Sec. III, in which the
particle and the external field are described using combined
states that include the internal state of the particle, which
can host a number of bosonic excitations (e.g., phonons or
plasmons), the rotational state, and the electromagnetic field in
the photon-number representation. The coupling between the
mechanical rotation and the vacuum photon field is mediated
by internal excitations of the particle. Using Fermi’s “golden
rule” to evaluate the different possible transitions between
those states, we calculate the torque and the net radiated power.
The final analytical expressions for these magnitudes are the
same as those obtained from the FDT approach.

We have extended the QM model to cope with fermionic
systems, such as, for instance, a molecule or a quantum dot
with an effective two-level electronic structure. This extension
has required a careful derivation involving the particle-dipole
operator and the Fermi-Dirac statistics.

The contribution to vacuum and thermal friction coming
from magnetic polarization has been shown to be important
for highly conductive materials (e.g., gold), and it can actually
dominate over its electric counterpart. In contrast, it is almost
negligible in less conductive materials such as graphite.

Our results can be relevant to the study of the rotational
dynamics of cosmic nanoparticles. In a more fundamental
direction, they provide solid theoretical support for a semiclas-
sical treatment of fluctuations using the FDT. These methods
can be useful to deal with friction in other situations such as
sliding surfaces, a particle moving near a surface, and neutral
particles in relative contactless motion. An interesting scenario
is presented by Casimir-bound objects, orbiting around each
other, so that spin-orbit interaction (i.e., coupling between
rotational and translational degrees of freedom) can play a
significant role.
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APPENDIX: DERIVATION OF AN EFFECTIVE
POLARIZABILITY FOR A ROTATING PARTICLE

As indicated in the main text, calculating the contribution
of field fluctuations to both the torque and the radiated
power requires transforming the external field to the rotating
frame, in which it produces an induced dipole via the particle
polarizability, along with the corresponding induced field, and
finally this field has to be transformed back to the rest frame.
It is possible to condense these steps in an effective particle
polarizability that contains the effect of the rotational motion.

We start by examining the relation between the laboratory-
frame induced dipole (nonprimed variables) and the dipole in
the rotating frame (primed variables) given by Eq. (9). Using
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the particle polarizability, we can write

px(ω) = 1
2 [α(ω+)E′

x(r,ω+) + iα(ω+)E′
y(r,ω+)

+ α(ω−)E′
x(r,ω−) − iα(ω−)E′

y(r,ω−)],

py(ω) = 1
2 [−iα(ω+)E′

x(r,ω+) + α(ω+)E′
y(r,ω+)

+ iα(ω−)E′
x(r,ω−) + α(ω−)E′

y(r,ω−)],
(46)

pz(ω) = α(ω)E′
z(r,ω),

where E′ is the field in the rotating frame. Now, we insert the
field in the rest frame using

E′
x(r,ω) = 1

2 [Ex(r,ω+) − iEy(r,ω+)

+Ex(r,ω−) + iEy(r,ω−)],

E′
y(r,ω) = 1

2 [iEx(r,ω+) + Ey(r,ω+)

− iEx(r,ω−) + Ey(r,ω−)],

E′
z(r,ω) = Ez(r,ω).

Finally, introducing these expressions into Eq. (46), we find
p = αeffE, from where one readily obtains Eq. (14) for the
components of the rest-frame polarizability αeff .
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Erratum: Thermal and vacuum friction acting on rotating particles [Phys. Rev. A 82, 063827 (2010)]
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DOI: 10.1103/PhysRevA.87.019904 PACS number(s): 42.50.Wk, 41.60.−m, 45.20.dc, 78.70.−g, 99.10.Cd

Equation (34) contains two sign typographical errors, and the p’s should be primed. The correct expression is as follows:

〈k′
jm

′l′i | HI |kjmli〉 = −i

√
2πh̄ωi

V
N

1
2
{[p′

j,x(δm,m′+1 + δm,m′−1) − ip′
j,y(δm,m′+1 − δm,m′−1)]ei,x

+ [ip′
j,x(δm,m′+1 − δm,m′−1) + p′

j,y(δm,m′+1 + δm,m′−1)]ei,y + 2p′
j,zδm,m′ei,z}

= −i

√
2πh̄ωi

V

N

2
[δm,m′+1(p′

j,x − ip′
j,y)(ei,x + iei,y) + δm,m′−1(p′

j,x + ip′
j,y)(ei,x − iei,y) + 2p′

j,zδm,m′ei,z].

These typographical errors do not affect any of the other equations and figures in the paper.
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