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Abstract. We discuss the differences and similarities in the interaction of scalar
and vector wave fields with particles and holes. Analytical results are provided
for the transmission of isolated and arrayed small holes as well as surface modes
in hole arrays for light, electrons and sound. In contrast to the optical case, small-
hole arrays in perforated perfect screens cannot produce acoustic or electronic
surface-bound states. However, unlike electrons and light, sound is transmitted
through individual holes approximately in proportion to their area, regardless of
their size. We discuss these issues with a systematic analysis that allows one to
explore both common properties and unique behavior in wave phenomena for
different material realizations.
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1. Introduction

Scientists have been fascinated by wave phenomena and the many common aspects shared by
different physical realizations of propagating oscillatory motion, although a unique behavior
also accompanies each of them [1]. Light, electrons and sound are prototypical examples
of waves that reveal profound differences, even at the level of a single-particle, classical
description. This discussion is preceded by a rich literature dating back to the nineteenth
century [2]–[9]. Atom and electron waves are at the heart of a long series of studies in thermal-
atom scattering [10] and electron diffraction by atomic lattices [11], whereas the discovery of
extraordinary light transmission through hole arrays [12] has also prompted new investigations
of sound [13]–[17] and reactivated the field.

The similarities between acoustic and optical transmission have been emphasized by
several groups [13, 14, 16], but intrinsic differences separate the two kinds of waves, namely:
the absence of a cutoff wavelength for the existence of acoustic guided modes, in contrast to
the optical case; the extraordinary shielding of sound near the onset of diffraction [15]; and the
exotic behavior conveyed by intrinsic elastic modes, with no parallel in optics [17]. Likewise,
matter waves display unique characteristics, as we discuss below. However, despite the intensity
of the debate, no concluding study has been made on the similarities and differences in the
scattering of scalar and vector waves by particles and holes, although the accepted emphasis on
similarities is a common source of misconceptions.

Here, we confront the scattering properties of particles and holes for different kinds of
waves (light, electrons and sound). First, we recall that small individual holes drilled in perfect
screens are very permeable to sound, but nearly impenetrable for electrons and light. We
then revisit the Babinet principle for all these waves, which directly relates the properties of
perforated screens to those of particles arrays. From here, we demonstrate that hole arrays in thin
screens cannot sustain acoustic or electronic surface-trapped modes, in contrast to the optical
case. These results provide essential tools for exploring other common properties and unique
behavior in wave phenomena, some of which are outlined in the concluding paragraph.

The electron wave function, the sound pressure in a fluid, and each of the components of
the electromagnetic field satisfy the scalar wave equation

(∇2 + k2)ψ = 0, (1)
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Figure 1. Normal-incidence transmission of light, electrons, and sound through
an individual circular hole, drilled in perfect-conductor, infinite-potential, and
hard-solid films, respectively. (a) Transmission cross section of a zero-thickness
screen as a function of aperture radius. The transmission is normalized to the
hole area. The lower inset shows the small-hole behavior (dashed curves and
analytical expressions) compared to full calculations (solid curves). The small-
hole analytical limits are taken from [4], [5], and [6] for sound, light, and
electrons, respectively. (b–d) Full thickness-radius dependence of the normalized
transmission. The onsets of new guided modes are indicated by vertical dashed
lines. The analytical estimates for Fabry–Perot resonances are shown as dotted
curves.

where k is the wavevector. Fluid dynamics, Schröginger’s equation and Maxwell’s equations
reduce to equation (1) when describing sound, electrons and light in homogeneous media.
The difference in the behavior of these types of waves lies in the boundary conditions. For
simplicity, we assume infinite potential boundaries for electrons, hard solids for sound, and
perfect conductors for light. Then, the fields at the boundaries satisfy ψ = 0 for electrons, the
vanishing of the normal derivative for sound, and the vanishing of the parallel electric field and
the perpendicular magnetic field for light.

2. Individual holes

The response of an individual hole drilled in a thin perfect screen reveals distinct characteristics
for different types of waves, as illustrated in figure 1 and table 1. The transmission in figure 1
is calculated by matching continuous-cylindrical-wave expansions of the fields outside the
hole to a sum of guided modes inside the cylindrical cavity [18, 19]. The latter reduce to
Jm(Q R)exp (±iqz + imϕ) in the case of scalar waves (expressed in cylindrical coordinates
(R, ϕ, z)), where m is the azimuthal number, Q runs over the zeros of Jm(Qa) and J ′

m(Qa)
for electrons and sound, respectively, a is the hole radius, and q =

√
k2 − Q2 is the wavevector

along the hole-axis direction, z. In particular, only m = 0 contributes for sound (Qa =

0, 3.83, 7.02, . . .) and electrons (Qa = 2.40, 5.52, . . .) under normal incidence. The hole-
cavity optical modes possess a polarization degree of freedom [18], so that doubly degenerate
m = ±1 waves participate in normal-incidence scattering (Qa = 1.84, 3.83, 5.33, . . .).
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Table 1. Near-side scattered field produced by an individual aperture of radius
a drilled in a thin perfect screen in response to a scalar field ψ0 (for sound and
electrons) or perpendicular-electric and parallel-magnetic fields E0 and H0 (for
light) acting at the position of the hole. The transmitted field on the far side
has the same form, but with opposite values of the scattering coefficients αs,
αe, αE, and αM. Note that the scattered field is constructed from the solution of
equation (1) for r 6= 0, exp (ikr)/r , via these scattering coefficients. In particular,
αE and αM are the electric and magnetic polarizabilities [20], respectively.

Type of wave Scattered field Scattering coefficients

Sound ψ scat(r)= αsψ0eikr/r Re{αs} = −a/π , Im{α−1
s } = −2k

Electrons ψ scat(r)= αe(i
∂ψ0

∂z )
∂
∂z (

eikr
r ) Re{αe} = −a3/3π , Im{α−1

e } = −2k3/3
Light Hscat(r)=

[
αM

(
k2H0 + H0 · ∇

∂
∂z

)
Re{αM} = Im{α−1

M } =

+ikαEE0 × ∇
]

eikr

r −2Re{αE} = 2a3/3π , Im{α−1
E } = −2k3/3

The transmission exhibits the following interesting features: (1) Holes in a zero-thickness
screen (figure 1(a)) transmit sound approximately in proportion to their area [4], in contrast to
the severe ∼(a/λ)4 cutoff for light [5] and electrons [6]. (2) The transmission is enhanced
and displays a colorful structure near the onset of new guided modes (i.e. near k = Q), as
indicated in figure 1(b) by vertical dashed lines. The emergence of each new guiding mode is
described by the corresponding new value of Q. (3) Fabry–Perot resonances are established
upon successive reflections of guided modes at both hole ends, signalled by the in-phase
scattering condition qt = nπ +ϕ0, where t is the thickness, n runs over positive integers,
q depends on k as indicated above, and ϕ0 is a phase shift produced by the noted reflections (we
fit ϕ0 = 0, −π/4 and −π/2 for light, electrons and sound, respectively). This condition leads
to the dotted curves in figure 1(b) (i.e. a relation between t and k), in reasonable agreement with
the calculated transmission maxima, although they do not exactly map the complexity of modal
structures arising from mode interference. Also, good correspondence between measurements
and simulations was reported for these acoustic resonances by Wilson and Soroka as early as
1965 [9]. (4) The acoustic scattered pressure is a monopole [exp(ikr)/r ], in contrast to the
dipolar response to electrons and light, as inferred from table 1 (second column), which shows
small-aperture close-form expressions derived from an analysis similar to that of [20] for light.
This analysis yields an overall multiplicative scattering coefficient, αν (table 1, third column),
the imaginary part of which is found by imposing the condition that the scattered and reflected
waves carry the same flux as an incident plane wave, because there is no absorption in a perfect
screen. Then, a non-vanishing Im{αν} reflects the finite coupling of the hole to propagating
waves. Incidentally, the small-hole transmission cross sections given in the inset of figure 1(a)
follow from angular integration of the far-field intensity [4]–[6].

3. Transmission through hole arrays

The response of a periodic hole array to an incident plane wave can be readily expressed in
terms of the response of each individual element (see scattering coefficients in table 1) both
to the external perturbation and to the field produced by the rest of the holes [21]. The latter
reduces to a sum of the inter-hole interaction over the lattice, Gν(k‖), which must include
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Table 2. Lattice sums and transmission coefficients for periodic small-hole
arrays. The parallel wavevector of the incident plane wave is k‖, the normal

wavevector is kz =

√
k2 − k2

‖
, and the sums run over lattice sites R. A is the area

of the unit cell. The value of L is 1 in region I of figure 2(a) (i.e. above k = k‖

and below the diffraction threshold) and 0 in region II (i.e. below both k = k‖

and the diffraction threshold).

Type of Lattice sum Density of states Transmission coefficient
wave

Sound Gs =
∑

R 6=0 e−ik‖·R eikr

r Im{Gs} =
2πL

kz
− k ts = [L + i(Akz/2π)Re{α−1

s − Gs}]−1

Electrons Ge =
∑

R6=0 e−ik‖·R ∂2

∂z2
eikr

r Im{Ge} =
−2πkz L

A + k3

3 te = −[L − i(A/2πkz)Re{α−1
e − Ge}]−1

Light G l =
∑

R6=0 e−ik‖·R[k2
z − (k̂‖ · ∇)2] eikr

r Im{G l} =
2πkz L

A −
2k3

3 tTE = [L + i(Akz/2π)Re{α−1
M − G l}]−1

a phase factor exp(−ik‖ · R) depending on the lattice site R and driven by the incident-plane-
wave parallel-wavevector k‖, as shown in the explicit expressions given in table 2 (second
column). Interestingly, Im{Gν} admits close-form expressions (table 2, third column) because
only a finite number of diffracted beams contribute when re-expressing Gν as a sum over
reciprocal lattice vectors. In particular, the first term in Im{Gν} vanishes (L = 0) in region II
of figure 2(a) (see table 2).

Following a procedure detailed elsewhere for the case of light [21], we find the transmission
coefficients tν listed in table 2 (last column). In the optical case, we just give the transmission for
TE polarization in the hole array, but a similar expression is obtained for TM transmission. The
tν coefficients have been simplified by using the analytical expressions for Im{α−1

ν } and Im{Gν}

given in tables 1 and 2. The remaining real part Re{α−1
ν − Gν} appears in the denominator of tν

and full transmission is predicted when it vanishes within region I of figure 2(a), where L = 1,
so that |tν| = 1 under that condition.

In particular, small holes produce large values of α−1
ν that can be only matched by diver-

gences in Gν such as those shown in figure 2(a) for Gs. For example, Re{Gs}, Re{G l} → ∞

along the k = k‖ and k = 2π/d − k‖ lines. This is illustrated in figure 2(c) for k‖ = 0.
However, Re{α−1

s }< 0, so that sound cannot be fully transmitted through small holes (i.e.
Re{Gs}> 0 and Re{αs}< 0 have opposite signs in the region where Re{Gs} diverges, so that
Re{α−1

ν − Gν} cannot vanish). In contrast, 100% transmission of light is possible for arbitrarily
small holes because Re{αM}> 0, and Re{G l} can always be matched by Re{αM}−→

a→0
∞ [21].

Regarding electrons, Ge does not even diverge, thus averting the possibility of full matter-wave
transmission through small holes in the simple arrays under consideration.

Additionally, a divergence in Gν results in vanishing transmission, and this is the case of
light and sound for k = 2π/d − k‖, in contrast to electrons, which have finite transmission under
that condition (see, for example, the midpoint between A and B in figure 2(b)).

Although these conclusions are predicted by the small-aperture limits discussed in table 2,
they are in full agreement with the rigorous calculations shown in figure 2(b), which are obtained
by matching expansions of the field similar to those employed for individual holes (in particular,
Rayleigh expansions outside the film, which reflect the periodicity of the array).
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Figure 2. Interaction between holes in a zero-thickness screen. We assume a
square lattice of period d . (a) Real part of the lattice sum Gs for the interaction
of sound scattered by holes in a screen. The parallel wavevector k‖ is taken
along a nearest-neighbors direction. (b) Normal incidence transmission of light,
electrons and sound through holes of radius d/5 for an excursion of the
wavevector k along the AB segment in the diagram of (a). (c) Lattice sums for
all three kinds of waves (light G l, electrons Ge, and sound Gs) along the AB
segment of (a). Real and imaginary parts are represented as solid and broken
curves, respectively. (d) Same as (c), but along the CD segment of (a). The Gs

curve in (c) and all curves in (d) are multiplied by a factor of 25.

4. Bound states in hole arrays

Trapped modes are signalled by divergences in the transmission coefficients outside the
diffraction region (i.e. when there is scattered evanescent field without incident waves). This
is possible in region II of figure 2(a), where L = 0, so that tν diverges if Re{α−1

ν − Gν} = 0 (see
table 2, last column). This possibility is explored in figure 2(d), which shows the lattice sums Gν

along the CD segment of figure 2(a). Similar to the transmission discussed above, small holes
can meet this condition provided Re{Gν} diverges and Re{αν} is positive. This can be only true
for light, and therefore, we predict optical bound states in arrays of holes, however small. In
contrast, no acoustical or electronic modes are possible in such arrays made of regular, small
holes. These conclusions are summarized in table 3.
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Table 3. Extraordinary transmission (ET) of individual and arrayed small holes,
and surface-bound modes in arrays. The acoustic transmission of individual holes
is proportional to their area, whereas arbitrarily small-hole arrays can trap light
and produce full optical transmission.

Type of wave One-hole Hole-array Hole-array
ET ET bound states

Sound Yes No No
Electrons No No No
Light No Yes Yes

5. Particle arrays

Invoking Babinet’s principle, the transmission of sound, electrons and light through a hole array
drilled in a thin screen must coincide with the reflection of electrons, sound, and light (in that
order), on the complementary array of discs (see appendix A). Therefore, an array of small discs
can produce full light reflection, but this is not the case for sound and electrons. In contrast to
previous studies [13], the same argument leads to the conclusion that no acoustic or electronic
modes are possible in arrays of small holes or discs for thin specimens, although TE (TM)
optical modes exist in disc (hole) arrays [21]. Further inspection of the scattering coefficients
for small spherical scatterers made of infinite-potential and hard-solid materials reveals that
planar periodic arrays composed of such objects cannot trap electrons or sound, respectively,
although finite potentials and softer materials can lead to both full reflection and planar binding
via localized particle modes.

6. Conclusions

The scattering of sound, electrons, and light by arrays of small particles and holes exhibit
dramatic differences that are clearly illustrated by figure 1(a) and by the existence of surface
modes exclusively for light (see a summary in table 3). Beyond the scope of our work,
we expect the effect of non-perfect screens and multipolar scattered terms to also produce
exotic behavior, in particular when non-absorbing scatterers are considered (for example, real
potentials and dielectric materials for electrons and light). Acoustic and electron scatterers can
be made to resonate through their monopolar or dipolar response, thus leading to new classes of
surface modes in arrays. We hope that our study stimulates further theoretical and experimental
investigation in these directions.
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Appendix A. Babinet’s principle for light, electrons and sound

In this appendix, we present a simple, self-contained derivation of Babinet’s principle for scalar
and vector waves, which directly relates the properties of any perforated thin planar screen
to those of its complementary screen, thus allowing us to extract conclusions on the relation
between particle and hole arrays regarding their transmission, reflection, and wave binding
performance. The sound pressure reflected by the former screen coincides with the forward
scattering wave function for electrons incident on the complementary screen. For light, the field
reflected by the former screen for a given polarization of the incident wave coincides with the
field transmitted by the latter screen for the orthogonal polarization.

The waves scattered by a thin perfect screen and by its complementary screen are related
via Babinet’s principle. By a perfect screen we understand an infinite-potential wall for
electrons, a hard-solid plate for sound, or a perfect-conductor film for light. The evolution of
these waves in a homogeneous medium is ruled by the same scalar wave equation,

(∇2 + k2)ψ = 0, (A.1)

where k is the wavevector, and ψ is the wave function for electrons, the pressure for sound
and the components of the electromagnetic field for light. The fields at the boundaries satisfy
ψ = 0 for electrons, the vanishing of the normal derivative for sound, and the cancellation of
the parallel electric field and the perpendicular magnetic field for light.

A.1. Babinet’s principle for scalar waves

The properties of a patterned thin screen (zero thickness) and those of the complementary screen
are related via Babinet’s principle [2, 3]. For an external sound plane-wave, exp(ik‖ · R + ikzz),
incident on the first screen (figure A.1(a)), we can fulfil the condition of the vanishing normal
derivative by just adding a specularly reflected wave, exp(ik‖ · R − ikzz), where R is the parallel
component of the coordinate vector r = (R, z), and the direction z is normal to the screen. We
still need to impose the continuity of both the wave amplitude and its normal derivative at the
screen opening S, which can be done by simply adding the following scattered wave:

ψ scat(r)= sign(z)
∫

S
dR′ G0(r − R′) σ (R′), (A.2)

where

G0(r)= exp (ikr)/r (A.3)

is the Green function of the wave equation (equation (A.1)) and σ is a surface charge defined
on S and determined by the condition

ψ scat(R, z = 0)= −1, R ∈ S. (A.4)

Noticing that

∂G0(r)/∂z−→
z→±0

∓ δ(R), (A.5)

we find that (i) the expression (A.2) has a vanishing normal derivative in the screen outside S,
thus satisfying the boundary conditions for figure A.1(a), and (ii) ψ scat(r)+ exp(ik‖ · R + ikzz)
vanishes at S, so that it represents the solution for an electron wave function incident
on the complementary screen (figure A.1(b)). This means that the transmittance of sound
(electrons) through a drilled screen coincides with the reflectance of electrons (sound) on the
complementary disc(s).
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Figure A.1. Elements used in the discussion of Babinet’s principle, which
connects the scattering of sound by a screen containing an aperture region S
(a) and the scattering of electrons by the complementary screen (b), so that
ψ scat

= ψ scat
C is shared in both cases. It also connects the scattering of light with

a given polarization σ (e.g. σ = TE or TM) (c) and the scattering of light with
orthogonal polarization σ ′ (i.e. σ ′

= TM or TE, respectively, and also E0,C = H0)
by the complementary screen (d), so that the scattered fields in (c) and (d) satisfy
Escat

C = Hscat. The screens are contained in the z = 0 plane.

A.2. Babinet’s principle for light

Similarly, the transmittance of light with a certain polarization through a perforated screen
coincides with the reflectance of light with orthogonal polarization on the complementary
screen [21]. This statement of Babinet’s principle is a rigorous consequence of vector diffraction
theory [20], but it admits a simpler derivation based upon the symmetry of Maxwell’s
equations [22], the solution of which reads, for external electric and magnetic currents jE

and jH,

Escat
=

i

k
(k2 + ∇∇·)AE − ∇ × AH, (A.6)

and

Hscat
=

i

k
(k2 + ∇∇·)AH + ∇ × AE, (A.7)

where

Aν =
1

c

∫
S

dR′ G0(r − R′) jν(R′). (A.8)

In our case, the currents are considered to be in the plane of the screen, within a region
S defining an opening, or a disc in the complementary geometry. In particular, the disc of
figure A.1(d) displays an electric current jE (but no magnetic current) in response to an external
plane wave of polarization σ ′. Using the limit (A.5) for ∂G0/∂z, we find that the rotational terms
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in equations (A.6) and (A.7) are perpendicular to the screen outside S, and the remaining terms
are parallel to it. This, together with the invariance of the equations under the transformation

jE → jH,

jH → −jE,

E → H,

H → −E

permits writing the solution for the complementary drilled screen of figure A.1(c), illuminated
by a plane wave of orthogonal polarization σ (for example, σ = TE and σ ′

= TM), using
the scattered electric field of figure A.1(d) (Escat

C ), now taken to be the scattered magnetic
field (Hscat

= Escat
C ). Note that the plane wave reflected by an unperforated film (i.e. H̃0 with

H̃0‖ = H0‖ and H̃0⊥ = −H0⊥) has been added to figure A.1(c) in order to match the boundary
conditions in the film. Direct inspection reveals that the condition[

E0eik‖·R + Escat
C (R, z = 0)

]
× ẑ = 0, R ∈ S (A.9)

guarantees both the vanishing of E‖ and H⊥ in the disc of figure A.1(d) and the continuity of
the fields in the hole of figure A.1(c).
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