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Relativistic energy loss and induced photon emission in the interaction
of a dielectric sphere with an external electron beam

F. J. Garcı´a de Abajo
Departamento de CCIA, Facultad de Informa´tica, and Departamento de Fı´sica de Materiales, Facultad de Quı´mica,

UPV/EHU, San Sebastia´n, Spain
~Received 26 May 1998!

An analytical expression for the energy loss suffered by a fast electron passing near a homogeneous dielec-
tric sphere is derived within a fully relativistic approach. The sphere is described by a frequency-dependent
dielectric function. The electromagnetic field induced by the passage of the electron is then obtained by
expressing the solution of Maxwell’s equations for this geometry in terms of the scattering of the multipole
expansion of the incoming electromagnetic field at the sphere. The energy loss is derived from the induced
field acting back on the electron. The variation of the energy-loss spectra with both the radius of the sphere and
the impact parameter of the electron trajectory is studied in detail. Part of the energy loss is transformed into
radiation, which is also investigated. For spheres characterized by real dielectric functions, like those of ionic
materials in the transparency-frequency region, it is shown that the entire energy loss is transformed into
radiation. Examples of loss spectra and radiation emission spectra are given for a material described by a
Drude-like dielectric function~e.g., Al! and for SiO2 . @S0163-1829~99!12103-9#
a
in

o
t
V

m
hi

a
th
a
e

e
,

o
-

th

or

tin
b
e-

e

ed
the

dd-
d
ll
dia-
nce

l
er-
y-

f
nd-
ar-
ent

ther
ch

a
ived.
try
tic
rge
he
the

the

ed

ge
I. INTRODUCTION

Scanning transmission electron microscopy~STEM! has
proved to be a powerful technique for determining loc
chemical and electronic structure, particularly when us
the excitation of target atoms.1 The relatively more intense
low-energy, valence excitation part of the spectrum is also
considerable interest,2–5 though its theoretical analysis is no
so direct. Under typical STEM conditions, a fast 100-ke
electron beam is focused on an area with diameter as s
as 0.2 nm with a controlled position on the sample. T
permits electron-energy-loss spectroscopy~EELS! with high-
lateral resolution to be performed. The position of the fe
tures in the low-energy loss spectra are directly related to
geometry of the specimen under study, and hence, its an
sis may provide valuable information on this aspect as w
as yielding local chemical or electronic data.

Nonrelativistic, analytical descriptions of EELS hav
been limited to simple geometries such as planes6,7

cylinders,8 hyperbolic wedges,9 isolated spheres,10–12 two
coupled spheres,13 spheroids,14 or the combination of a
spherical interface and a plane.15,16 More recently, the
boundary-charge method has allowed calculations in m
complex geometries17–19 by self-consistently solving the in
duced charge-density distribution.

The large velocity of STEM electrons (v.0.5c) implies
the need for relativistic corrections. Furthermore, when
sample under study, of characteristic dimensiona, has modes
of frequencyv such that the wavelength of the radiation f
that frequencyl5c/v is smaller thana ~i.e., va/c.1), the
effects of retardation emerge as frequency shift and split
of highly delocalized, low-order modes. The latter can
efficiently excited by fast electrons, for which the effectiv
impact parameter range of interaction with the target isv/v.

The relativistic analytical treatments of EELS have be
PRB 590163-1829/99/59~4!/3095~13!/$15.00
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even more strongly limited to the cases of planar surfaces20,21

and cylinders.8 Numerical methods have also been employ
to explore more complex geometries by making use of
transfer-matrix approach for periodic systems22,23 or by gen-
eralizing the nonrelativistic boundary-charge method by a
ing boundary-current distributions to be solve
self-consistently.24 Studies of energy losses from sma
spheres by the boundary-charge method revealed that ra
tion corrections could still be appreciable even in the abse
of Cherenkov effects@i.e., for (v/c)2Re$e%,1] or retarda-
tion corrections (va/c,1). Therefore, further analytica
studies would be useful in order to gain in substantial und
standing of the relativistic effects involving electron energ
loss phenomena.

Fuchs and Kliewer25 studied analytically the effects o
retardation on the polariton modes of small LiF spheres fi
ing out a rich structure of magnetic and electric modes, ch
acterized by frequencies and radiative widths depend
upon the sphere radius. Here, their work is extended to o
dielectric materials and to include the contribution of ea
mode to the energy-loss probability.

An analytical solution for the energy loss suffered by
fast electron passing near a homogeneous sphere is der
The exact solution of Maxwell’s equations for this geome
is expanded in terms of multipoles of the electromagne
field, made up of both the bare field set up by the fast cha
and the induced field, resulting from the scattering of t
bare field at the sphere. The induced field acts back on
projectile producing a net retarding force responsible for
electron-energy loss.

As a simplifying assumption, the sphere will be describ
by a frequency-dependent dielectric functione(v), in the
spirit of the local response approximation, valid for the lar
velocities under consideration.26 Furthermore, relativistic ef-
fects in the dielectric function27 will be neglected, since we
will be interested in low-energy valence losses.
3095 ©1999 The American Physical Society
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The formalism and details of the theory are presented
Sec. II. The application to spheres of different radius a
trajectories with various impact parameters is discusse
Sec. III. Comparison with former nonrelativistic10,11 results
is also offered.

Part of the energy loss is transformed into induced rad
tion, via coupling with the radiative modes of the sphe
The analysis of this radiation is given in Sec. IV. In partic
lar, it is found that the energy loss goes entirely into rad
tion when the dielectric function is real. This effect can
relevant in STEM studies of ionic compounds like LiF
SiO2 characterized by large real dielectric functions in t
transparency frequency region below 9 eV.

Finally, the main conclusions will be summarized in Se
V. Atomic units ~a.u., i.e.,e5m5\51) will be used from
now on, unless otherwise specified.

II. ANALYTICAL SOLUTION FOR THE ENERGY LOSS

Let us consider a fast electron moving along a straig
line trajectory with constant velocityv and passing near
homogeneous sphere located in vacuum, as shown in Fi
The sphere will be assumed to be nonmagnetic and desc
by a frequency-dependent dielectric functione(v). The en-
ergy loss suffered by the electron will be obtained from
retarding force that the induced electromagnetic field p
duces when it acts back on the electron.

Without any loss of generality, the electron trajectory w
be chosen parallel to thez axis with impact parameterb with
respect to the origin of coordinates, made to coincide w
the center of the sphere of radiusa, as shown in Fig. 1.

The electromagnetic field satisfies the Maxwell equatio
which can be solved for spherically symmetric objects l
our sphere by using a multipole expansion.

A. Scalar functions

The multipole expansion of the electromagnetic field c
be conveniently performed in frequency spacev using the
dyadic identity, valid for any smooth vector field and in pa
ticular for the electric fieldE,28

E5¹
1

¹2
~¹•E!1L

1

L2
~L•E!2~¹3L !

1

L2¹2
@~L3¹!•E#,

FIG. 1. Schematic representation of the geometry under st
an electron is moving in vacuum with constant velocityv and im-
pact parameterb with respect to the center of a nonmagnetic hom
geneous sphere of radiusa described by a frequency-depende
dielectric functione(v).
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whereL52 i r3¹ is the orbital angular-momentum oper
tor. This expression permits longitudinal, magnetic, and el
tric scalar functions to be defined as28

cL5
1

¹2
¹•E,

cM5
1

L2
L•E, ~1!

and

cE5
2 ik

L2¹2
~L3¹!•E, ~2!

respectively, so that the electric field reduces to

E5¹cL1LcM2
i

k
¹3LcE, ~3!

where k5v/c. In a vacuum free of charges and curren
these scalar functions satisfy the wave equation

~¹21k2!c50. ~4!

Now, using the Maxwell equation¹3E5 ikH and Eq.~4!,
one finds the magnetic field28

H52
i

k
¹3LcM2LcE. ~5!

Since we are interested in the electromagnetic field in
vacuum where the electron is moving, the contribution of
longitudinal scalar functioncL, which describes an instan
propagation of the fields@i.e., it plays in Eq.~3! the same
role as the electric-scalar potential in the nonrelativis
limit #, must cancel the contribution of the pole of 1/¹2 in Eq.
~2!, also leading to instant propagation.28 Hence, we can se
cL50 in Eq. ~3! and take¹252k2 in Eq. ~2! @see Eq.~4!#,
that is, we redefine

cE5
i

k

1

L2
~L3¹!•E. ~6!

Therefore, the longitudinal modes are explicitly left out
the final result for the case of external trajectories.

The multipole expansion of the bare electromagnetic fi
~i.e., in the absence of the sphere! set up by the electron in
the noted vacuum region has to be made up of spher
waves with no net flux, since an electron freely moving
vacuum cannot give rise to any radiation. Therefore, the s
lar functions that describe this external field have to have
form

cM ,ext~r !5(
l 51

`

(
m52 l

l

i l j l~kr !Ylm~V r !c lm
M ,ext, ~7!

and

cE,ext~r !5(
l 51

`

(
m52 l

l

i l j l~kr !Ylm~V r !c lm
E,ext, ~8!

y:

-
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where j l(x) are spherical Bessel functions, (r ,V r) are the
spherical coordinates ofr , and the sums run over spheric
harmonicsYlm . These expressions are valid for the regi
a,r ,b, that is, in the spherical shell of vacuum outside t
sphere of radiusa that does not overlap the electron traje
tory of impact parameterb ~see Fig. 1!.

B. Multipoles for a fast electron

The scalar functionscM ,ext(r ) and cE,ext(r ) can be ob-
tained from the bare electric field produced by the elect
~its 21 charge is taken into account!,29

Eext~r !5S ¹2
ikv

c D E dteivtG0~r2r t!,

where

G0~r2r t!5
eikur2r tu

ur2r tu
~9!

is the Green function of Eq.~4!, r t5r01vt describes the
electron trajectory,v5(0,0,v) is the velocity vector, and the
cylindrical coordinates ofr0 are denoted (b,w0 ,z0).

Here, it is convenient to expand the Green function
terms of multipoles,30

G0~r ,r t!54pk(
l 50

`

(
m52 l

l

j l~kr !hl
~1 !~krt!Ylm~V r !Ylm* ~V r t

!,

~10!

where hl
(1)(x)5 ihl

(1)(x) is the spherical Hankel function
~the notation of Messiah31 has been adopted!. This expres-
sion is valid forr ,r t , which is the case for external trajec
tories andr near the sphere surface. Then, the electric fi
becomes

Eext~r !5S ¹2
ikv

c D(
l 50

`

(
m52 l

l

j l~kr !Ylm~V r !f lm , ~11!

where

f lm54pkE dteivthl
~1 !~krt!Ylm* ~V r t

!.

The integral in this equation can be performed analytically
shown in Appendix A. Using the result given in Eqs.~A1!,
~A2!, and~A8!, one finds

f lm54pk
Alm

1

v
KmS vb

vg De2 imw02 ivz0 /v, ~12!

whereKm is the modified Bessel function of orderm andg
51/A12(v/c)2 accounts for the Lorentz contraction of th
impact parameterb. In the case under consideration, whe
the electron is moving in vacuum, the coefficientAlm

1 , de-
fined by Eq.~A9!, depends exclusively onv/c. An exponen-
tial dependence onb at large-impact parameters is intro
duced here viaKm functions.

Inserting Eq.~11! into Eq. ~1!, using the relationL•¹
50, and performing the substitutionsL•v5Lzv→mv and
L2→ l ( l 11), one finds that Eq.~7! is indeed correct, pro-
vided one defines expansion coefficients
n

d

s

c lm
M ,ext5

24p i 12 lkv

c2

mAlm
1

l ~ l 11!
KmS vb

vg De2 imw02 ivz0 /v.

~13!

The componentl 50 is left out, since it does not contribut
to the fields.

Similarly, the electric-scalar function is given by Eq.~8!
with coefficients

c lm
E,ext5

22p i 12 lk

cg

Blm

l ~ l 11!
KmS vb

vg De2 imw02 ivz0 /v,

~14!

where

Blm5Al ,m11
1 A~ l 1m11!~ l 2m!

2Al ,m21
1 A~ l 2m11!~ l 1m!. ~15!

The derivation of Eq.~14! requires a more detailed analysi
which is summarized in Appendix B.

C. Scattering by a sphere

For an arbitrary, spherically symmetric medium, t
matching conditions satisfied by the fields~i.e., the continu-
ity of the normal displacement, the parallel electric field, a
the magnetic field! reduce, after using Eqs.~3! and~5!, to the
continuity of cM, ecE, ]cM/]r , and (11r ]/]r )cE.28

Thus, magnetic and electric scalar functions are decouple
a spherically symmetric system.

The total electromagnetic fields are the superposition
the external fields and the induced or scattered fields, tha
E5Eext1Eind and H5Hext1H ind. In general, the electro
magnetic field in vacuum is a combination of outgoing a
incoming waves, represented by spherical Hankel functi
hl

(1)(kr) and hl
(2)(kr), respectively. In our case, the in

duced fields find their sources in the charges and curr
induced by the external electron in the sphere. Therefore
r outside the sphere, the induced fields have to be a com
nation of only outgoing waves, that is,

cM , ind~r !5(
l 51

`

(
m52 l

l

i lhl
~1 !~kr !Ylm~V r !c lm

M , ind ~16!

and

cE, ind~r !5(
l 51

`

(
m52 l

l

i lhl
~1 !~kr !Ylm~V r !c lm

E, ind. ~17!

Actually, applying the boundary conditions stated above, o
finds that these equations are correct and that the rela
between the components of external and induced scalar f
tions is given by the scattering matrix32 in the same way as in
the partial-wave analysis of the Schro¨dinger equation for a
finite-range spherical potential. More precisely,

c lm
M , ind5t l

Mc lm
M ,ext ~18!

and

c lm
E, ind5t l

Ec lm
E,ext, ~19!

where the scattering-matrix elementst l
M and t l

E are indepen-
dent ofm due to the spherical symmetry.
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Outside the sphere, the scalar functions satisfy Eq.~4!,
whereas in the inside region they satisfy the equation¹2

1k2e)c50. Now, solving these two equations with th
matching conditions stated above, there is only one solu
~except for a normalization constant andylm angular depen-
dence! for eachl that behaves like

c; j l~kr !1t lhl
~1 !~kr !, r .a,

where the first term is the zero-flux solution for an infin
vacuum@i.e., the terms of the externally applied field give
by Eqs.~7! and~8!# and the second term is the scattered p
~induced outgoing field!. This equation defines the values
the scattering matrix, commonly written in terms of pha
shifts d l as t l5sindl exp(idl).

Equations~18! and ~19! are general for spherically sym
metric targets. For homogeneous spheres one recovers
pressions familiar from Mie’s scattering theory.33 More pre-
cisely,

t l
M5

2 j l~r0!r1 j l8~r1!1r0 j l8~r0! j l~r1!

hl
~1 !~r0!r1 j l8~r1!2r0@hl

~1 !~r0!#8 j l~r1!
, ~20!

and

t l
E5

2 j l~r0!@r1 j l~r1!#81e@r0 j l~r0!#8 j l~r1!

hl
~1 !~r0!@r1 j l~r1!#82e@r0hl

~1 !~r0!#8 j l~r1!
,

~21!

where r05ka, r15kaAe with Im$r1%.0, and the prime
elsewhere denotes differentiation with respect tor0 andr1 .

The modes of a homogeneous sphere are given by
zeros of the denominators of Eqs.~20! and ~21!, in agree-
ment with the result found by Fuchs and Kliewer,25 who
studied polariton modes of LiF spheres. Here, we will foc
on higher-energy modes as shown in Fig. 2 for spheres
scribed by the Drude dielectric function

e~v!512
vp

2

v~v1 ih!
. ~22!

~The case of aluminum corresponds to bulk-plasma ene
vp515 eV and electron gas dampingh51.06 eV.) The
loss probability must be governed by the imaginary part
the scattering-matrix elements so that these quantities h
been represented in Fig. 2 as a function of frequencyv.
Even for zero damping@Figs. 2~a! and 2~b!#, the natural os-
cillations have a finite width, clearly seen in the case of
electric modes~solid curves!. When a finite damping is
added@solid curves in Figs. 2~c!–2~f!#, the increase in the
widths is given by'h. Both the shift of the eigenfrequen
cies towards lower values and the increase in the widths w
increasing sphere radius are in qualitative agreement with
case of LiF polaritons.25

Expanding the denominator of Eq.~21! in the small
sphere limit for real dielectric functions, the real part of t
electric eigenfrequenciesv r are found to satisfy
n

rt

e

ex-

he

s
e-

y

f
ve

e

th
he

e l 1 l 111
1

2S v ra

c D 2

3F l 11

2l 21
2e

3~2l 11!

~2l 13!~2l 21!
2e2

l

2l 13G'0.

Now, for the dielectric function of Eq.~22! in the h→0
limit, one finds the real part of the dipole eigenfrequen
( l 51)

v r /vp'A110.1a2

311.1a2
, ~23!

wherea5vpa/c. Similarly, the imaginary part is given by

v i'
2a3

913.3a2

v r
2

vp
. ~24!

FIG. 2. ~a! Imaginary part of the scattering-matrix elemen
Im$t l

M% ~broken curves! and Im$t l
E% ~solid curves!, given by Eqs.

~20! and ~21!, respectively, forl 51. The sphere is described by
Drude dielectric function with dampingh50. ~b! The same as~a!
for l 52. ~c! Im$t l

E% ~solid curves! and ut l
Eu2 ~broken curves! for h

50.07vp and l 51. ~d! The same as~c! for l 52. ~e! Im$t l
M% ~solid

curves! and ut l
Mu2 ~broken curves! for h50.07vp and l 51. ~f! The

same as~e! for l 52. The curves in each plot correspond to differe
sphere radius:vpa/c50.2, 0.6, 1, 1.4, and 1.8~the larger the ra-
dius, the higher the scattering-matrix element!.
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D. Energy loss

The positive energy loss suffered by the fast elect
passing near the sphere can be related to the force exerte
the induced electric fieldEind acting on it as

DEloss5E dt v•Eind~r t ,t !5E
0

`

vdv G loss~v!, ~25!

where

G loss~v!5
1

pvE dt Re$e2 ivtv•Eind~r t ,v!% ~26!

is the so-called loss probability.
Equation ~26! can be divided into the contributions o

magnetic and electric modes,

G loss5GM , loss1GE, loss,

coming from the magnetic and electric parts of the induc
electric fieldLcM and (2 i /k)¹3LcE, respectively.GM , loss

can be calculated by inserting Eq.~16! into Eq. ~3! and this
in turn into Eq. ~26!. Noticing that only the electric-field
component along the direction of motion~the z axis here!
contributes to produce energy loss, using the results of
pendix A, and making the substitutionv•L5vLz→mv, one
obtains

GM , loss~v!5(
l 51

`

(
m52 l

l
mv

pv2
KmS vb

vg D
3Re$~Alm

1 !* eimw01 ivz0 /vi 2 lc lm
M , ind%. ~27!

Similarly, GE, loss can be calculated starting from Eq.~17!
and using similar techniques to those followed in Appen
B to obtain Eq.~14!, except that one has nowv•(¹3L )
5(2 iv/2)(]2L12]1L2). One finds

FIG. 3. Dependence of the coupling constantsClm
M @broken

curves; Eq.~30!# and Clm
E @solid curves; Eq.~31!# on electron ve-

locity for different values of (l ,m) with l 51,2 ~left part! and l
53 ~right part!, as shown in the insets. Notice thatClm

M

5Cl ,2m
M , Clm

E 5Cl ,2m
E , andCl0

M50.
n
by

d

p-

x

GE, loss~v!5(
l 51

`

(
m52 l

l
c

2pv2g
KmS vb

vg D
3Re$Blm* eimw01 ivz0 /vi 2 lc lm

E, ind%. ~28!

Finally, inserting Eqs.~13! and ~14! into Eqs. ~18! and
~19!, and these in turn into Eqs.~27! and~28!, one finds that
the electron energy-loss probability per-unit-energy rangev
for an electron passing outside a dielectric sphere with
locity v and impact parameterb relative to the center of the
sphere~see Fig. 1! is given by

G loss~v!5
1

cv (
l 51

`

(
m52 l

l

Km
2 S vb

vg D
3@Clm

M Im$t l
M%1Clm

E Im$t l
E%#, ~29!

where the positive coefficients

Clm
M 5

1

l ~ l 11!
U2mv

c
Alm

1 U2

~30!

and

Clm
E 5

1

l ~ l 11!
U1g BlmU2

~31!

depend exclusively on the ratiov/c. The first values ofAlm
1

andBlm @see Eqs.~A9! and ~15!# are

A10
1 5A3

p

i

~v/c!2
, B1052A12

p

1

~v/c!2g
,

A11
1 52A1,21

1 52A 3

2p

1

~v/c!2g
,

B1152B1,2152A6

p

i

~v/c!2 .

The dependence ofG loss(v) on both the sphere radiusa
and its dielectric functione(v) shows up only via the
velocity-independent scattering-matrix elements of
sphere for magnetic and electric componentst l

M and t l
E , re-

spectively~see Sec. II C!. Sincel 50 does not contribute to
the loss, this term has been explicitly left out of the sum
Eq. ~29!.

Equation ~29! has a form similar to its nonrelativistic
counterpart, first derived by Ferrell and Echenique.10,11 In
both cases, the dependence on impact parameterb is fully
contained inside the modified Bessel functionsKm , which
behave exponentially at large distances.

Equation~29! explicitly separates the dependence on
dielectric response of the sphere, fully contained in the s
tering matricest l , from the dependence on the electron tr
jectory. The latter enters in the coupling constantsClm ,
which depend exclusively on the electron velocity, and
the impact-parameter dependent Bessel functions just no
This separation is general as long as the electron moves
side the sphere.

Very interestingly, for relatively small spheres, whe
only low l ’s contribute significantly, the dependences
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3100 PRB 59F. J. GARCI´A de ABAJO
electron velocity and dielectric function are well separated
Eq. ~29!, so that there are no losses that are enhanced w
the Cherenkov condition (v/c)2 Re$e%.1 is fulfilled, and
therefore, no Cherenkov effect is expected for the case u
consideration, that is, electron trajectories external to
sphere. In thea→` limit, Eq. ~29! has to converge to the
loss in front of a plane at a fixed distanceb2a, where Cher-
enkov terms show up even for external trajectories.21 In that
limit, the contribution of higher-order terms becomes
creasingly important, leading to mixing of the dependen
on both velocity and dielectric function and resulting in t
usual Cherenkov terms.

The coefficientsClm are represented in Fig. 3 as a fun
tion of v/c for l 5123. It is clear that the contribution o
magnetic modes~broken curves! is much smaller than that o
their electric counterpart. Moreover, the dependence of
latter with velocity is relatively smooth for typical STEM
energies, though the low- and high-velocity limits sho
strong variations.

The minor role played by magnetic modes in the coupl
coefficients is combined with the smaller magnitude of
magnetic scattering-matrix elements as compared with
electric ones. This is shown in Fig. 2, where Im$t l

M% @dotted
curves in Figs. 2~a! and 2~b!, corresponding to dampingh
50, and solid curves in Figs. 2~e! and 2~f!, for dampingh
50.07vp] is systematically smaller than Im$t l

E%. The
smaller the sphere radius, the larger this effect. Actually,t l

M

take significant values only for large spheres~i.e., for a
.c/vp) in the high-v region, where the Bessel functions
Eq. ~29! dramatically reduce the loss probability.

The loss probability is represented in Figs. 4–8 for diffe
ent combinations of electron velocity, impact parame
sphere radius, and dielectric functions. Moreover, the in
grated loss probability, defined as

FIG. 4. Energy-loss spectra as a function of energy rangev for
electrons passing near a sphere under grazing incidence~i.e., b
5a; see Fig. 1!. The loss probability has been calculated within
fully relativistic approach@Eq. ~28!#. The sphere is described by th
Drude dielectric function given by Eq.~22! with zero damping.
Different sphere radiia have been considered, as shown in t
insets, ranging froma50.1c/vp ~a513.2 Å for Al; upper curve!
to a52c/vp ~a5263 Å for Al; lower curve! in equal steps. The
small inset shows the two extreme cases. Consecutive curve
separated by a constant shift of 1 a.u. in order to improve read
ity.
n
en

er
e

-
s

e

g
e
e

-
r,
-

G total
loss5E

0

`

dvG loss~v!, ~32!

is studied in Figs. 9 and 10.

E. Dipole approximation and nonrelativistic limit

In the limit of small sphere radius, the scattering-mat
elements scale ast l

M;(ka)2(l 11) and t l
E;(ka)2l 11. In par-

ticular,

t l
E5

~ l 11!~2l 11!

@~2l 11!!! #2

e21

l e1 l 11
~ka!2l 11, ka!1, ~33!

and t l
M!t l

E . Therefore, the leading terms in Eq.~29! corre-
spond to electric modes withl 51. Keeping only those terms
and using the values ofAlm

1 and Blm given in the previous
section, one finds

G loss~v!5
Cv2

v4g2FK1
2S vb

vg D1
1

g2
K0

2S vb

vg D G , ka!1,

~34!

where

C5
4a3

p
ImH e21

e12J .

Using the Drude dielectric function defined by Eq.~22!,
taking theh→0 limit, noticing that the plasma frequency
related to the electron gas densityn via vp

254pn, and as-
suming that there is only one electron inside the electron
that defines the sphere@i.e.,n53/(4pa3)], one finds that the
total energy loss as defined by Eqs.~25! and~34! is given by
the right-hand side of Eq.~34! with C52 andv5vp /A3

are
il-

FIG. 5. Energy-loss spectra@G5G loss, solid curves; Eq.~28!#
and photon-emission spectra@G5G rad, broken curves; Eq.~37!# for
an electron moving under the same conditions as in Fig. 4, ex
that the impact parameter is takenb51.1a ~see Fig. 1!, the sphere
radius isa51.2c/vp (a5157.8 Å for Al!, and the electron gas
damping has been varied fromh50 ~upper curve! up to h
50.2vp ~lower curve!, as shown in the insets (h50.07vp for Al !.
Consecutive curves are separated by a constant shift of 2 a.
order to improve readability.



tions of

ase

PRB 59 3101RELATIVISTIC ENERGY LOSS AND INDUCED PHOTON . . .
FIG. 6. Comparison between the results obtained from the relativistic theory@solid curves; Eq.~28!# and the nonrelativistic theory
@broken curves; Eq.~35!# for electron energy-loss spectra obtained under the same conditions as in Fig. 4 with different combina
parameters: electron gas dampingh50.07vp ; impact parameterb51.1a; sphere radiusvpa/c50.2, 0.5, 0.7, and 1.2@figures~a!, ~b!, ~c!,
and ~d!, respectively;a526.3,65.8, 92.1, and 157.8 Å in the care of Al#. Different electron velocities have been considered in each c
as shown in the insets.
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~the latter is the dipolar mode of a nonrelativistic spher!.
This result coincides with the energy loss suffered by
electron moving near a unit charge subjected to a spring
frequencyvp /A3.29 In other words, this demonstrates th
the sphere responds like a dipole in theka!1 limit.

Notice that the relativistic effects in Eq.~34! are related to
kinematic factors (g21 factors!, leaving the position of the
dipole resonance unchanged with respect to the nonrelat
tic result ~i.e., e1250). Therefore, the retardation effec
within a small sphere (ka!1) do not affect the resonanc
frequencies.

Equation~29! is thus a generalization of the dipole lim
represented by Eq.~34!, and the Lorentz contraction of th
impact parameter by a factorg is maintained.

In the nonrelativistic limit, inserting Eq.~A10! into Eq.
~15! one obtainsBlm52i lA lm

1 . Then, using Eqs.~29!, ~30!,
~31!, and ~A10!, one finds that the contribution to the los
probability originating in magnetic and electric modes sc
with c asc2l 21t l

M andc2l 11t l
E , respectively. Then, noticing

the scaling of the scattering matrix described at the be
ning of this section, one finds that the contribution of ma
netic modes vanishes in the nonrelativistic limit, whereas
remaining electric modes contribute as

G loss~v!5
4a

pv2 (
l 51

`

(
m52 l

l S va

v D 2l l

~ l 1m!! ~ l 2m!!

3Km
2 S vb

v D ImS e21

l e1 l 11D , ka!1, v/c!1,

~35!

as found by Ferrellet al.11 Equations~33! and ~A10! have
been used in the derivation of Eq.~35!.
n
of

is-

e

-
-
e

The results derived from Eq.~35! have been compare
with the full relativistic calculation of Eq.~29! in Fig. 6.

III. DISCUSSION OF ELECTRON ENERGY LOSS
SPECTRA

The natural oscillations of the sphere have a finite wid
even for real dielectric functions~see Fig. 2!. In that case, the
loss probability takes nonzero values over extended reg
of v, as Fig. 4 illustrates for different sphere radius~see
insets! in the case of grazing trajectories~i.e., b5a). The
sphere has been described by the Drude dielectric func
given by Eq.~22! taking h50, and the results have bee
scaled in order to make the picture valid for any value ofvp .
The figure shows how the position and width of the pea
evolve with the sphere radius in the loss spectra. This is
agreement with the discussion of Fig. 2 above. Incidenta
the surface model 51 dominates the loss spectra for sm
sphere radius~see upper curve in the inset!, whereas higher-
l modes show up as the radius increases. The approxim
expressions~23! and ~24! for the complex dipole frequency
work well up to vpa/v'1.2.2v i is directly connected to
half width at half maximum of thel 51 main feature in the
figure ~i.e., the peaks of lowest energy!.

When a finite damping is considered in the dielect
function, the features of the loss spectra are broadened,
their width is approximately given by the radiative wid
~i.e., the value forh50) plus the damping, as shown in Fig
5 ~solid curves!. Notice that the excitation of the differen
modes results in common broad structures ash increases.

The variation of the loss probability with electron veloci
is analyzed in Fig. 6 for different spheres radius. The velo
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ties under consideration are shown as labels attached to
different curves. As the velocity of the electron increases,
scaled loss probabilityv2G loss/a becomes larger and the rela
tive role of low-l modes is enhanced in all cases@see the
peak atv/vp'0.5 in Fig. 6~d!#. This result was expecte
from the velocity dependence of the external electron fie
whose range of interaction is'vg/v according to Eq.~12!,
so that low-l modes, involving oscillations with a low num
ber of nodes,33 dominate at large velocities, for which th
external potential becomes smoother. The results of the n
relativistic calculation@Eq. ~35!# are represented by broke
curves, and they are compared with the full relativistic
sults @Eq. ~29!#, shown by solid curves. Both calculation
agree relatively well for the smallest sphere radius un
consideration, which in the case of aluminum correspond
a526.3 Å . However, fora592.1 Å @see Fig. 6~c!# the
differences are already considerable~both in the position of
the features and in their relative magnitude! at electron en-
ergies typical of STEM~i.e., v;0.5c). The discrepancy for

FIG. 7. ~a! Comparison between the loss probability (G5G loss,
solid curves! and the radiation emission probability (G5G rad, bro-
ken curves! corresponding to a 300-keVe2 passing at a distance o
100 Å from the surface of a SiO2 sphere for different values of th
sphere radius ranging froma550 Å to a5500 Å as shown in
the insets. The smaller plot shows the loss function for bulk SiO2 .
The small arrows point to the energy below which the dielec
function is real. Consecutive curves are separated by a con
shift of 0.02 a.u. in order to improve readability.~b! Loss probabil-
ity and photon-emission probability under the same conditions a
~a! for two different electron energies~see insets!. The contribution
of l 51 is given in separate curves~see legend of curve labels!, in
which case the radiation emission probability cannot be separ
from the loss probability.
the
e

,

n-

-

r
to

a5157.8 Å is remarkable@see Fig. 6~d!, where the prob-
ability has been multiplied by a factor of 2#.

Figure 6 confirms that the validity of the nonrelativist
theory is confined to thevpa/c!1 andv/c!1 limit.

The case of SiO2 spheres has been considered as wel
Fig. 7. This material presents a large band gap that is tra
lated into a region of nearly real dielectric function below
eV and above the phonon losses, as shown in the inse
Fig. 7~a!. The small arrows indicate the inelastic thresho
for creation of electronic excitations in the material. Noti
that the loss probability increases with the radius of
sphere in the transparency region. For the largest sph
under consideration and within that frequency region,
energy-loss probability is comparable in magnitude to
value in the absorptive part of the spectrum. The shape of
spectrum above 12 eV changes very little with sphere rad
and the largest variations are produced in the region im
diately below the inelastic threshold.

Two different electron velocities have been considered
Fig. 7~b! in order to make clear that the origin of radiatio
emission under discussion is not connected to the Cheren
effect: in the case of 100-keV electrons, the Cherenkov c
dition (v/c)2 Re$e%.1 is not satisfied forv,8.5 eV,
where the dielectric function is nearly real; however, t
Cherenkov condition is fulfilled for 200-keV electrons in th
whole v range. Both velocities give rise to qualitative
similar spectra, allowing us to rule out the Cherenkov eff
as the origin of radiation for the currently investigated ext
nal trajectories. The figure illustrates as well the domin
character of the dipolar mode in the low-v region.

The contribution of different multipoles to the loss pro
ability is shown in Fig. 8. For the relatively large radiu
under consideration (a5157.8 Å in the case of Al! one
needs to sum up tol'15, in agreement with previous non
relativistic results.10 The inset of the figure shows the contr
bution of magnetic modes@Eq. ~27!# on a different, much

c
nt

in

ed

FIG. 8. Contribution to the energy-loss probability (G5G loss,
solid curves! and radiation emission probability (G5G rad, broken
curves! coming from different multipoles for an electron movin
near a sphere of radiusa51.2c/vp (a5157.8 Å in thecase of Al!
with impact parameterb51.1a and velocityv50.6c. The sphere is
described by the Drude dielectric function with dampingh
50.07vp . The different curves show the contribution of the fir
l max values of the orbital momentum numberl. The contribution of
magnetic modes~M! is shown in the inset. Notice that the probab
ity comes almost entirely from the contribution of electric mode
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FIG. 9. Dependence of the total loss probability@solid curves; see Eq.~32!# on the dampingh for spheres of different radius~see insets!
described by a Drude dielectric function. Various electron velocities have been considered in each case as indicated in the labels
nying the different curves. The total photon-emission probability has also been included for comparison~broken curves!. The impact
parameter has been takenb51.1a in all cases.
th
o
a

w
re

ro

l
h
e
ilit
a

ro
-
ra

-
es

th
.
te
lo
g

he
er

al
that

the
the

s

e

smaller scale; this permits us to conclude that most of
loss originates in the excitation of electric modes, in go
agreement with the results extracted above from Figs. 2
3.

The total-loss probability, integrated in energy as sho
in Eq. ~32!, is represented in Figs. 9 and 10 for sphe
described by a Drude dielectric function and for SiO2
spheres, respectively. The dependence of the total-loss p
ability on the dampingh is analyzed in Fig. 9~solid curves!,
where different sphere radius have been studied@vpa/c
50.2, 0.6, 1, and 2 in~a!, ~b!, ~c!, and ~d!, respectively#.
Various velocities have been also considered~see curve la-
bels!. The impact parameter has been taken proportiona
the sphere radius,b51.1a. The probability shows a smoot
dependence onh in all cases. It can take relatively larg
values even for realistic dampings. Moreover, the probab
decreases and becomes featureless as the velocity incre

Figure 10 shows the dependence of the total-loss p
ability ~solid curves! on impact parameter for different com
binations of sphere radius and electron velocities. An ove
exponential decay withb is observed, coming from theKm
function of Eq.~29!. A decreasing trend with increasing ve
locity observed in Fig. 9 is observed here for the small
sphere under consideration (a550 Å in the upper part!, and
also in the intermediate size sphere (a5200 Å ) for low
values ofb/a. However, an increase in the probability wi
increasing velocity is obtained in the rest of the cases
more detailed analysis of the probability spectra indica
that this behavior is governed by the radiative losses be
the inelastic threshold, which become important for lar
sphere radius and largeb/a ratios.

IV. RADIATION EMISSION INDUCED BY FAST
ELECTRONS PASSING NEAR A HOMOGENEOUS

SPHERE

The coupling of the electron with radiative modes of t
sphere gives rise to radiation emission. The radiated en
e
d
nd

n
s

b-

to

y
ses.
b-

ll

t

A
s
w
e

gy

can be calculated by integrating the Poynting vector norm
to an arbitrarily large sphere centered around the target,
is,

DErad5
c

4pE dtE dV rr
2@E~r ,t !3H~r ,t !#• r̂ ,

where r points to the surface of the large sphere and
integral over the time has been included. Expressing
fields in terms of their frequency components, one finds

DErad5E
0

`

vdvE dV rG
rad~v,V r !,

where

G rad~v,V r !5
r 2

4p2k
Re$@E~v!3H~2v!#• r̂ % ~36!

is the probability of emitting a photon of energyv per unit
energy range and unit solid angle around the directionV r .
Equation~36! can be computed with the help of the field
calculated in previous sections.

In ther→` limit, only the induced fields contribute to th
radiation. In this limit, one can approximatehl

(1)(kr)
' i 2 leikr/kr in Eqs.~16! and ~17!, and¹ can be substituted
by ik r̂ in the induced part of the fields given by Eqs.~3! and
~5!. Substituting the resulting expression into Eq.~36! and
integrating over angles, one finds28

G rad~v!5E dV rG
rad~v,V r !

5
1

4p2k3 (
l 51

`

(
m52 l

l

l ~ l 11!@ uc lm
M , indu21uc lm

E, indu2#.
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Finally, using Eqs.~18! and~19!, the photon emission prob
ability reduces to

G rad~v!5
1

cv (
l 51

`

(
m52 l

l

Km
2 S vb

vg D @Clm
M ut l

Mu21Clm
E ut l

Eu2#.

~37!

For real~either positive or negative! dielectric functions,
using basic properties of the spherical Bessel functions
Eqs. ~20! and ~21!, one finds ut l

Mu25Im$t l
M% and ut l

Eu2

5Im$t l
E%. Hence, the radiation emission probability@Eq.

~37!# coincides with the loss probability@Eq. ~29!# in that
case, clearly indicating that the medium is unable to abs
any energy when the absorptive or imaginary part of
dielectric function is zero.

For complex dielectric functions, one hasut l
Eu2<Im$t l

E%
and ut l

Mu2<Im$t l
M%, as shown in Figs. 2~c!–2~f!, where the

Drude dielectric function has been used withh50.07vp .
This result is consistent with the requirement thatG rad

<G loss, that is, the energy lost in the form of radiation has
be always smaller than the energy lost by the electron.

Now, Fig. 4, which corresponded to the loss probabil
for a real Drude dielectric function, can be thought of
showing the photon emission probability.

The effect of electron gas dampingh on the radiation-
emission probability is shown in Fig. 5~broken curves!. The
figure confirms thatG rad is always smaller thanG lossand both
quantities converge to the same value in theh→0 limit.
Moreover, the radiation losses decrease with increas

FIG. 10. Dependence of the total loss probability~solid curves!
on the ratio b/a ~impact parameter to sphere radius! for SiO2

spheres of different radius~50, 200, and 800 Å , as shown in th
insets!. Various electron velocities have been considered in e
case, as indicated in the labels accompanying the different cu
The total photon-emission probability has also been included
comparison~broken curves!.
in

rb
e

s

g

damping, so that in the competition to absorb energy ou
the electron motion the dissipative modes of the sph
dominates for largeh. Very interestingly, some of the mode
that are present in the loss probability are nearly absent in
photon emission probability~see the features nearv
'0.65vp in the curve corresponding toh50.01vp), indi-
cating the different character~either dissipative or radiative!
of the different modes.

Below the inelastic threshold~i.e., in the region of real
dielectric function! all losses in SiO2 go into radiation as
shown in Fig. 7~broken curves!. This figure illustrates as
well how G rad increases with increasing sphere radius~i.e.,
when the relevant condition for the emergence of retarda
effectsva/c.1 is fulfilled!.

The decomposition ofG rad into the contributions coming
form different l ’s is shown in Fig. 8~broken curves!. Notice
that the modesl 51 andl 52 give the dominant contribution
to the radiation emission, in contrast to the loss probabil
for which higher values ofl still contribute significantly.
Therefore, the dissipative character is dominant with resp
to the radiative one in high-l modes. This can be qualita
tively understood using the following argument: the numb
of nodes of the charge-density perturbation for the differ
modes increases withl, so that strongly-interacting region
of opposite charge are spatially closer for larger values ol,
and hence, retardation effects, including the emergent ra
tive widths, are weaker. This conclusion is also supported
the widths of the electric modes as observed in the scatte
matrix elements~see Fig. 2! in their evolution froml 51 to
l 5z.

The total photon-emission probability converges to t
total-loss probability in the limit of vanishing damping, a
shown in Fig. 9. However, the former~broken curves! de-
creases with increasing damping, though it can still retai
measurable value ('0.5% for 100-keV electrons,b
51.1a, a5c/vp , and dampingh50.07vp appropriate for
Al !. For finite values of the damping, the total photo
emission probability shows a pronounced increase with
creasing sphere radius.

In the case of large SiO2 spheres, the total photon
emission probability converges quickly to the total-loss pro
ability with increasing impact parameter, as shown in t
lower part of Fig. 10. This is not true in the case of sm
spheres~upper part!, where retardation effects are not impo
tant and the photon-emission probability~broken curves! lies
much lower than the loss probability~solid curves!.

V. CONCLUSIONS

The Maxwell equations have been analytically solved
an electron moving with constant velocity near a homo
neous sphere. This has permitted us to obtain an analy
expression for the loss probability as a function of the el
tron impact parameterb. The result@Eq. ~29!# looks similar
to its nonrelativistic counterpart,10 and the impact-paramete
dependence is subject to a Lorentz contraction via the fu
tion Km(vb/vg). The peaks in the loss spectra are shift
with respect to the nonrelativistic case. Moreover, the mo
have a natural width that produces a nonzero energy-
probability spread over a finite range of energies even w
the dielectric function of the sphere is real. Explicit appro

h
s.
r
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mate expressions are given for the dipole-complex eigen
quency in the case of a real Drude dielectric function@see
Eqs.~23! and ~24!#.

It has been shown that most of the energy losses origi
in the excitation of electric modes, and magnetic modes
nearly negligible. Furthermore, the bulk of the energy lo
comes from low-l modes in spheres of up to several hundr
Å in diameter.

Part of the energy loss goes into radiation, due to coup
with radiative modes of the sphere. In particular, when
dielectric function is real, the energy loss and the radia
energy coincide, that is, the medium cannot absorb any
ergy. This is the case of some materials within certain f
quency ranges. As an example, the case of SiO2 , character-
ized by a large absorption gap, has been studied in deta

For absorptive media, the presence of a finite imagin
part in the dielectric function increases the loss probabil
but reduces the photon-emission probability, since the e
tromagnetic field originating in the excitation of radiativ
modes is partly dissipated in the sphere before it escape
the form of radiation.

Judging from the examples offered in this paper, the pr
ability of emitting radiation induced by the passage of f
electrons is predicted to be large enough to be experim
tally detected, leading to the possibility of a microsco
technique based upon the measurement of electron-ind
photon-emission spectra.24
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APPENDIX A: COUPLING INTEGRALS

This appendix is devoted to derive an analytical solut
of the integral

Mlm
6 ~r0!5E dte6 ivthl

~1 !~kur01vtu!Ylm* ~V r01vt!,

~A1!

where hl
(1)(x) is the spherical Hankel function,31 and we

assumev.0.
This integral represents the electromagnetic coupling

tween a fast electron moving inside a homogeneous med
with constant velocityv and the multipole component (l ,m)
of the Green function of the medium, as written in Eqs.~9!
and ~10!. Here,r0 represents the electron-impact parame
with respect to the origin. The medium is assumed to
described by a frequency-dependent dielectric funct
e0(v), so thatk5(v/c)Ae0 is complex in general, and th
square root is taken to yield Im$k%.0 ~i.e., the electromag-
netic field is assumed to vanish at infinity!.

The velocityv will be assumed to be parallel to thez axis.
The solution for arbitrarily oriented velocity vectors can
easily obtained from the latter case by using rotation ma
ces for spherical harmonics.31 Moreover,
e-

te
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Mlm
6 ~r0!5Mlm

6 ~b,0,0!e2 imw0e7 ivz0 /v, ~A2!

where (b,w0 ,z0) are the cylindrical coordinates ofr0 , and

Ml ,2m
6 ~b,0,0!5~21!mMl ,m

6 ~b,0,0!.

Therefore, it is enough to consider the casem>0 and w0
5z050.

Our starting point is the time Fourier transform of th
retarded Green function29 @see Eq.~9!#

E dte6 ivt
eikur2~b,0,vt !u

ur2~b,0,vt !u
5

2

v
K0S v

vg
A~x2b!21y2De6 ivz/v,

~A3!

where r5(x,y,z),g51/A12b2, and b5kv/v. Again, the
square root is taken such that Re$g%.0. ~Notice that when
the electron moves in vacuum, one hask5v/c, so thatb
5v/c andg are the standard relativistic-kinematic factors!
Using the expansion of the Green function given in Eq.~10!,
the left-hand side of Eq.~A3! becomes

4pk(
l 50

`

(
m52 l

l

j l~kr !Ylm~V r !Mlm
6 ~b,0,0!

for r<b. Multiplying both this expression and the right-han
side of Eq. ~A3! by Ylm* (V r) and integrating overV r
5(u,w), one obtains

Mlm
6 ~b,0,0!5

1

2pkv
1

j l~kr !
E dV rYlm* ~V r !

3K0S v

vg
A~x2b!21y2De6 ivz/v. ~A4!

The integral over the azimuthal angle can be done
separating the dependence of the spherical harmonic ow
and using the relation29

E
2p

p

dwe2 imwK0S v

vg
A~x2b!21y2D

52pI mS vR

vg DKmS vb

vg D ~R<b!

whereR5Ax21y2. Then, Eq.~A4! reduces to

Mlm
6 ~b,0,0!5~21!m

a lm

kv
Km~vb/vg!

j l~kr !

3E
21

1

dmI mS vR

vg De6 ivz/vPl
m~m!, ~A5!

wherea lm5A@(2l 11)/(4p)#( l 2m)!/( l 1m)! is the coef-
ficient that accompanies the Legendre functionPl

m to form
the spherical harmonic,R5rA12m2, z5rm, m5cosu,
and the dependence on impact parameterb is fully contained
in the modified Bessel functionsKm(vb/vg).

The right-hand side of Eq.~A5! must be independent ofr.
In particular, in ther→0 limit the spherical Bessel function
j l(kr) goes like (kr) l /(2l 11)!!, leading to an apparent di
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vergence that is compensated by the vanishing integral. S
stituting I m and exp(6ivz/v) by their Taylor expansions
aroundr 50, one finds

~21!mE
21

1

dmI mS vR

vg De6 ivz/vPl
m~m!

5 (
j 5m

`

(
s5 j

`
~6 i !s2 j

2 j~s2 j !! @~ j 2m!/2#! @~ j 1m!/2#!

3S vr

v D s 1

g j
I j ,s2 j

lm , ~A6!

where the sum overj is restricted to evenj 1m integral
numbers and

I i 1i 2
lm 5~21!mE

21

1

dm~12m2! i 1/2m i 2Pl
m~m!. ~A7!

Equation ~A7! can be efficiently evaluated using a we
known numerically stable ascending recurrence relationl
for the Legendre functions,34 leading to

~ l 2m!I i 1i 2
lm 5~2l 21!I i 1 ,i 211

l 21,m 2~ l 1m21!I i 1 ,i 2
l 22,m

for l .m. The starting values of this recurrence areI i 1i 2
m21,m

50 and

I i 1i 2
mm5H ~21!m~2m21!!! BS i 11m12

2
,
i 211

2 D , i 2 even

0, i 2 odd,

whereB is the beta function,35 and I i ,i 2
m22,m50.

Upon inspection, one finds thatI j ,s2 j
lm 50 for s, l and j

>m. That is, only the termss> l survive in Eq.~A6!. Hence,
the r→0 limit of Eq. ~A5! finally results in

Mlm
6 ~b,0,0!5E dte6 ivthl

~1 !@ku~b,0,vt !u#Ylm@V~b,0,vt !#

5
Alm

6

v
KmS vb

vg D , ~A8!

where

Alm
6 5

1

b l 11 (
j 5m

l Cj
lm,6

g j
, ~A9!

Cj
lm,65

~6 i ! l 2 ja lm~2l 11!!!

2 j~ l 2 j !! @~ j 2m!/2#! @~ j 1m!/2#!
I j ,l 2 j

lm ,

and the sum is restricted to evenj 1m integral numbers. The
coefficientsAlm

6 depend onv via the dielectric function~see
the definition ofb andg above!, so that they are independe
of v when the electron moves in vacuum. Of courseAlm

2

5(Alm
1 )* .

In the nonrelativistic limitk→0, b→0, g→1, and

Alm
6 5

1

b l 11

~6 i ! l 1m~2l 11!!!

Ap~2l 11!~ l 2m!! ~ l 1m!!
. ~A10!

Then, multiplying Eq.~A8! by kl 11/(2l 21)!! and taking
the k→0 limit, one finds
b- E dt
e6 ivt

u~b,0,vt !u l 11
Ylm~V~b,0,vt !!

5
~6 i ! l 1m~2l 11!

Ap~2l 11!~ l 2m!! ~ l 1m!!

v l

v l 11
KmS vb

v D ,

which leads to the well-known nonrelativistic result for th
electron energy-loss probability in the case of an exter
trajectory, as found by Ferrellet al.11 ~see Sec. II E!.

APPENDIX B: THE ELECTRIC SCALAR FUNCTION

The derivation of Eq.~14! is outlined in this appendix.
Inserting Eq.~11! into Eq. ~6! and noticing that (L3¹)

•¹50, one finds

cE,ext~r !5
1

c (
l 51

`

(
m52 l

l
1

L2

3@v•~L3¹!# j l~kr !Ylm~V r !f lm . ~B1!

The operator in this expression can be written

v•~L3¹!5
iv
2

~L1]22L2]1!,

where]65]/]x6 i ]/]y and L65Lx6 iL y . The latter acts
only on the angular part of Eq.~B1! ~i.e., on the spherica
harmonics! according to29

L6Ylm5A~ l 7m!~ l 6m11!Yl ,m61 . ~B2!

The action of]6 in Eq. ~B1! can be studied by realizing
that ]6G0(r2r t)52]6

0 G0(r2r t), where]6
0 involves de-

rivatives with respect tor0 ~the dependence onr0 is con-
tained inf lm) rather thanr @see Eq.~9!#. Now, the relevant
identities are@see Eq.~12!#

]1
0 @Km~ab!e6 imw0#52aKm61~ab!e6 i~m61!w0 ~B3!

and

]2
0 @Km~ab!e6 imw0#52aKm71~ab!e6 i~m71!w0, ~B4!

easily derived by using the recurrence relations of the mo
fied Bessel functions.

Finally, applying Eqs.~B2!, ~B3!, and ~B4! to Eqs.~12!
and ~B1!, and making the substitutionL2→ l ( l 11), one
finds

cE,ext~r !5
22p ik

cg (
l 51

`

(
m52 l

l Alm
1

l ~ l 11!
j l~kr !e2 ivz0 /v

3FA~ l 2m11!~ l 1m!

3Km21S vb

vg DYl ,m21~V r !e
2 i~m21!w0

2A~ l 1m11!~ l 2m!

3Km11S vb

vg DYl ,m11~V r !e
2 i~m11!w0G .

Now, the summation indexm has to be rearranged in order
collect terms that multiply to the same spherical harmo
together. Finally, comparison with Eq.~8! yields Eq.~14!.
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