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Relativistic energy loss and induced photon emission in the interaction
of a dielectric sphere with an external electron beam
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An analytical expression for the energy loss suffered by a fast electron passing near a homogeneous dielec-
tric sphere is derived within a fully relativistic approach. The sphere is described by a frequency-dependent
dielectric function. The electromagnetic field induced by the passage of the electron is then obtained by
expressing the solution of Maxwell's equations for this geometry in terms of the scattering of the multipole
expansion of the incoming electromagnetic field at the sphere. The energy loss is derived from the induced
field acting back on the electron. The variation of the energy-loss spectra with both the radius of the sphere and
the impact parameter of the electron trajectory is studied in detail. Part of the energy loss is transformed into
radiation, which is also investigated. For spheres characterized by real dielectric functions, like those of ionic
materials in the transparency-frequency region, it is shown that the entire energy loss is transformed into
radiation. Examples of loss spectra and radiation emission spectra are given for a material described by a
Drude-like dielectric functior{e.g., Al and for SiQ. [S0163-1829)12103-9

. INTRODUCTION even more strongly limited to the cases of planar surfacés
and cylinder€ Numerical methods have also been employed
to explore more complex geometries by making use of the
transfer-matrix approach for periodic systéhfs or by gen-

Scanning transmission electron microscd®TEM) has
proved to be a powerful technique for determining local

chemical and electronic structure, particularly when usingyizing the nonrelativistic boundary-charge method by add-
the excitation of target atonisThe relatively more intense ing boundary-current  distributions to be  solved

low-energy, valence excitation part of the spectrum is also O§e|f_consistent|);_4 Studies of energy losses from small
considerable interedt? though its theoretical analysis is not spheres by the boundary-charge method revealed that radia-
so direct. Under typical STEM conditions, a fast 100-keVtjon corrections could still be appreciable even in the absence
electron beam is focused on an area with diameter as smajf Cherenkov effects$i.e., for (v/c)?Re{e}<1] or retarda-
as 0.2 nm with a controlled position on the sample. Thistion corrections @a/c<1). Therefore, further analytical
permits electron-energy-loss spectroscdplLS) with high-  studies would be useful in order to gain in substantial under-
lateral resolution to be performed. The position of the feastanding of the relativistic effects involving electron energy-
tures in the low-energy loss spectra are directly related to thevpss phenomena.
geometry of the specimen under study, and hence, its analy- Fuchs and Kliewér studied analytically the effects of
sis may provide valuable information on this aspect as welretardation on the polariton modes of small LiF spheres find-
as yielding local chemical or electronic data. ing out a rich structure of magnetic and electric modes, char-
Nonrelativistic, analytical descriptions of EELS have acterized by frequencies and radiative widths dependent
been limited to simple geometries such as pldies, Upon the sphere radius. Here, their work is extended to other
cylinders® hyperbolic wedged, isolated sphere¥12 two  dielectric materials and to include the contribution of each
coupled sphere$ spheroid$* or the combination of a Mode to the energy-loss probability.
spherical interface and a plafe!® More recently, the An analytical splutlon for the energy loss suffer(_ad by_a
boundary-charge method has allowed calculations in mor st electron passing near a hyomogeqeous sphere is derived.
complex geometrié&°by self-consistently solving the in- he exact solution of Maxwell's equations for this geometry
duced charge-density distribution. is expanded in terms of multlp_oles of the electromagnetic
The large velocity of STEM electrons &0.5c) implies field, ma(je up of b_oth the bar_e field set up by the fast charge
T . and the induced field, resulting from the scattering of the
the need for relativistic corrections. Furthermore, when th

L _ $are field at the sphere. The induced field acts back on the
sample under study, of characteristic dimensiphas modes  ,yiectile producing a net retarding force responsible for the

of frequencyw such that the wavelength of the radiation for electron-energy loss.

that frequenc\ = c/w is smaller thara (i.e., wa/c>1), the As a simplifying assumption, the sphere will be described

effects of retardation emerge as frequency shift and splittingby a frequency-dependent dielectric functiefw), in the

of highly delocalized, low-order modes. The latter can bespirit of the local response approximation, valid for the large

efficiently excited by fast electrons, for which the effective- velocities under consideratiéh Furthermore, relativistic ef-

impact parameter range of interaction with the target/is. fects in the dielectric functiod will be neglected, since we
The relativistic analytical treatments of EELS have beenwill be interested in low-energy valence losses.
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A whereL=—ir XV is the orbital angular-momentum opera-
vacuum tor. This expression permits longitudinal, magnetic, and elec-
v tric scalar functions to be defined?ds
1
L—— .
1
M =t E (6

FIG. 1. Schematic representation of the geometry under study’?‘nd
an electron is moving in vacuum with constant veloaitand im- .
pact parameten with respect to the center of a nonmagnetic homo- E_ ik LXV)-E %)
geneous sphere of radiws described by a frequency-dependent v _|_2V2( =
dielectric functione(w).

respectively, so that the electric field reduces to

The formalism and details of the theory are presented in i
Sec. Il. The application to spheres of different radius and vl M_ o E
trajectories with various impact parameters is discussed in E=Vy~+Ly kVXLw ' ©
Sec. Ill. Comparison with former nonrelativistic¢! results
is also offered. wherek=w/c. In a vacuum free of charges .and currents,

Part of the energy loss is transformed into induced radia'Ehese scalar functions satisfy the wave equation
tion, via coupling with the radiative modes of the sphere. (V2+K2) =0 ()
The analysis of this radiation is given in Sec. IV. In particu- '
lar, it is found that the energy loss goes entirely into radia-Now, using the Maxwell equatioN X E=ikH and Eq.(4),
tion when the dielectric function is real. This effect can beone finds the magnetic fieftl
relevant in STEM studies of ionic compounds like LiF or
SiO, characterized by large real dielectric functions in the

i
transparency frequency region below 9 eV. H=- EV XLyM =Ly~ ®)
Finally, the main conclusions will be summarized in Sec.
V. Atomic units (a.u., i.e.,e=m=#=1) will be used from Since we are interested in the electromagnetic field in the
now on, unless otherwise specified. vacuum where the electron is moving, the contribution of the
longitudinal scalar functions, which describes an instant
Il ANALYTICAL SOLUTION FOR THE ENERGY LOSS propagation of the field§i.e., it plays in Eq.(3) the same

role as the electric-scalar potential in the nonrelativistic
Let us consider a fast electron moving along a straightlimit], must cancel the contribution of the pole o¥#/in Eq.
line trajectory with constant velocity and passing near a (2), also leading to instant propagatightence, we can set
homogeneous sphere located in vacuum, as shown in Fig. #-=0 in Eq.(3) and takeV?= —k? in Eq. (2) [see Eq(4)],
The sphere will be assumed to be nonmagnetic and describeiat is, we redefine
by a frequency-dependent dielectric functiefw). The en-
ergy loss suffered by the electron will be obtained from the e 1
retarding force that the induced electromagnetic field pro- U=y E(LXV)'E- (6)
duces when it acts back on the electron.
Without any loss of generality, the electron trajectory will Therefore, the longitudinal modes are explicitly left out of
be chosen parallel to theaxis with impact parametdrwith  the final result for the case of external trajectories.
respect to the origin of coordinates, made to coincide with The multipole expansion of the bare electromagnetic field
the center of the sphere of radiasas shown in Fig. 1. (i.e., in the absence of the spheeet up by the electron in
The electromagnetic field satisfies the Maxwell equationsithe noted vacuum region has to be made up of spherical
which can be solved for spherically symmetric objects likewaves with no net flux, since an electron freely moving in

our sphere by using a multipole expansion. vacuum cannot give rise to any radiation. Therefore, the sca-
lar functions that describe this external field have to have the
A. Scalar functions form
The multipole expansion of the electromagnetic field can o |
be conveniently performed in frequency spacaising the M= D i(KD) Y m(Q) phet, (7)
dyadic identity, valid for any smooth vector field and in par- =1 m=-|
ticular for the electric fielcE,?® and
1 1 S
E=V_—(V-E)+L—(L-E)—=(VXL) [(LXV)-E] B )= D i (KDY m(Q) g )
V2 L? L2V? ’ =1 m=-1 metr T m
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where j,(x) are spherical Bessel functions,,(2,) are the —47it ko MA] wb! _
spherical coordinates af, and the sums run over spherical Y X > I I+T m(—) e MeoiwZolv,
harmonicsY,,,. These expressions are valid for the region c ( ) vy
a<r<b, that is, in the spherical shell of vacuum outside the (13
sphere of radiug that does not overlap the electron trajec- The component=0 is left out, since it does not contribute
tory of impact parameteb (see Fig. 1 to the fields.
Similarly, the electric-scalar function is given by BE&)
B. Multipoles for a fast electron with coefficients
The scalar functiongy™-®{(r) and ¢&*{r) can be ob- 24tk B wbl
tained from the bare electric field produced by the electron zpﬁfx‘: I |+m1 m(—) g imeo-iozglv
(its —1 charge is taken into accous? cy 10+1) Tvy (14
ikv ) h
EX{(r) = V—T)fdtéwteo(r—rt), where
Bim=Ams V(I +m+1)(1—m)
where
K — Al V(I —m+1)(1+m). (15)
elklr—ry '
Go(r—rt)=m (99  The derivation of Eq(14) requires a more detailed analysis,
It

which is summarized in Appendix B.
is the Green function of Eq@4), ri=ro+vt describes the

electron trajectoryy=(0,0p) is the velocity vector, and the C. Scattering by a sphere
cylindrical coordinates of, are denotedlf,¢o,2o). ~ For an arbitrary, spherically symmetric medium, the
Here, it is convenient to expand the Green function inmatching conditions satisfied by the fiel., the continu-
terms of multipoles ity of the normal displacement, the parallel electric field, and
w | the magnetic fieldreduce, after using Eq&3) and(5), to the

H H M E M E 28
Go(r.r,) =4k i (kDK Y (Y (O ), continuity of "', ey=, d¢/or, and (1+ralar)y-.
olrur)=4m ;)m:2—|]'( I (k1) Yim(£20)Yim () Thus, magnetic and electric scalar functions are decoupled in

(100  a spherically symmetric system.

+ (1 . . . The total electromagnetic fields are the superposition of
where h'( .)(X):'h'( )(X.)égp:s the spherical Hank_el function the external fields and s'ghe induced or scattereg)fierl)ds, that is,
(the notation of Messiah has been adoptedThis expres- — £_ pea; pind gpg H=Hexty Hind, | general, the electro-
slon s valid forr <r, which is the case for extemal trajec- agnetic field in vacuum is a combination of outgoing and
tories andr near the sphere surface. Then, the electric fiel ncoming waves, represented by spherical Hankel functions
becomes h{*)(kr) and h{7)(kr), respectively. In our case, the in-

D duced fields find their sources in the charges and currents
ES(r)= ( V- _) E E (KDY im(Q) i, (1) induced by the external electron in the sphere. Therefore, for
C Ji=o m==I r outside the sphere, the induced fields have to be a combi-

nation of only outgoing waves, that is,

where
o |
¢|m=4wkf dte“th (k) Yiin(Q,). P =2, 2 iR Yim( @)y (16)
The integral in this equation can be performed analytically a@nd
shown in Appendix A. Using the result given in Edé1), o |
(A2), and(A8), one finds wE,ind(r)zz 2 i|h|(+)(kr)ylm(9r)¢||:,ind. 17)
. =1 m= m
A . . . "
¢|m=4wkﬂKm(w—b) g iMmeo—iwzglv (12 Actually, applying the boundary conditions stated above, one
® vy finds that these equations are correct and that the relation

whereK ., is the modified Bessel function of orderand y between the components of external and induced scalar func-

=1/\1— (v/c)? accounts for the Lorentz contraction of the ONS is given by the scattering matfbin the same way as in

impact parameteb. In the case under consideration, Wheret_he_3 partial-wave a_maly5|s of_the Sctiroger_ equation for a

the electron is moving in vacuum, the coefficiekf,, de- finite-range spherical potential. More precisely,

fined by Eq.(A9), depends exclusively asVc. An exponen- ghind— {M M. ext (18)

tial dependence o at large-impact parameters is intro-

duced here vi&, functions. and
Inserting Eq.(11) into Eq. (1), using the relatior_ -V E.ind_ {E / E.ext (19

=0, and performing the substitutions-v=L,v —mv and Yim im

L2—I(I+1), one finds that Eq(7) is indeed correct, pro- where the scattering-matrix elements andtf are indepen-

vided one defines expansion coefficients dent ofm due to the spherical symmetry.
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Outside the sphere, the scalar functions satisfy &d.
whereas in the inside region they satisfy the equatigA (
+k?€)y=0. Now, solving these two equations with the
matching conditions stated above, there is only one solutior
(except for a normalization constant apg, angular depen-
dence for eachl that behaves like

g~j(kr)+th(P(kr), r>a,

where the first term is the zero-flux solution for an infinite
vacuumli.e., the terms of the externally applied field given
by Egs.(7) and(8)] and the second term is the scattered part
(induced outgoing field This equation defines the values of
the scattering matrix, commonly written in terms of phase
shifts 8, ast;=sing exp(4).

Equations(18) and (19) are general for spherically sym-
metric targets. For homogeneous spheres one recovers €
pressions familiar from Mie’s scattering thectyMore pre-
cisely,

Im{t}, Itf

—§1(po)p1ii (p1)+ poii (Po)ii(p1)

t'= = ——, (20
hi*(po)pai{ (p1) = polh{ " (po)1'fi(p1) 10 -
and R B W R Y S ¥ S K
. . . . ﬂ)/(l)P
e —lilpo)lpii(p1)]" + €l poji(po)]'ji(p1)
I h(+) ; r_ (+) s J FIG. 2. (a) Imaginary part of the scattering-matrix elements
hi = (po)lpaii(p)]" = el pohi ™" (po)I'J1(p1) 21) Im{tM} (broken curvesand In{tF} (solid curve$, given by Egs.

where po=ka, p;=kaye with Im{p,}>0, and the prime
elsewhere denotes differentiation with respecpgcandp; .

(20) and (21), respectively, fol =1. The sphere is described by a
Drude dielectric function with damping=0. (b) The same aa)
for 1=2. (c) Im{tF} (solid curve$ and|tF|? (broken curvesfor 7
=0.070,, andl =1. (d) The same atc) for | =2. () Im{t|M} (solid

The modes of a homogeneous sphere are given by thgirves and|tM|? (broken curvesfor 7=0.070, andl=1. (f) The

zeros of the denominators of EqR0) and (21), in agree-
ment with the result found by Fuchs and Klievf@rwho

same ase) for | =2. The curves in each plot correspond to different
sphere radiusw,a/c=0.2, 0.6, 1, 1.4, and 1.8he larger the ra-

studied polariton modes of LiF spheres. Here, we will focusdius, the higher the scattering-matrix element
on higher-energy modes as shown in Fig. 2 for spheres de-

scribed by the Drude dielectric function

2
P

B w(w+ing)’

w

e(w)=1 (22

1/ w,a\?
el+1+1+ =
2
[+1 3(21+1) ) |
X —€ —€ ~0.
21-1 (21+3)(21-1) 21+3

(The case of aluminum corresponds to bulk-plasma energy
wp=15 eV and electron gas damping=1.06 eV.) The now, for the dielectric function of Eq(22) in the 7—0

loss probability must be governed by the imaginary part Ofimit  one finds the real part of the dipole eigenfrequency

the scattering-matrix elements so that these quantities ha\(qaz 1)
been represented in Fig. 2 as a function of frequescy
) [1+0.1a?
Wyl Wp== —
o 3+1.1a?
pal/c. Similarly, the imaginary part is given by

Even for zero dampingFigs. 2a) and 2Zb)], the natural os-
cillations have a finite width, clearly seen in the case of the
electric modes(solid curve$. When a finite damping is
added[solid curves in Figs. @)—2(f)], the increase in the
widths is given by~ 7. Both the shift of the eigenfrequen-
cies towards lower values and the increase in the widths with _
) ) . ) o . wherea=w
increasing sphere radius are in qualitative agreement with the
case of LiF polaritong®
Expanding the denominator of Ed21) in the small
sphere limit for real dielectric functions, the real part of the
electric eigenfrequencies, are found to satisfy

(23

2
r

943322 0p

_(13 w

(24)

Wj
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10 T T T T —T T T T T 10 £l i 2 (,l)b
(v'y/c) c, [E105g ) (_)
------ =1 m=-1 27> 'y vy

X Re{Bl*melmzpo+la)ZO /vi =1 lpIErﬁind}' (28)

Finally, inserting Eqs(13) and (14) into Egs.(18) and
(19), and these in turn into Eq&27) and(28), one finds that
the electron energy-loss probability per-unit-energy rasage
for an electron passing outside a dielectric sphere with ve-
locity v and impact parametédr relative to the center of the
sphere(see Fig. 1is given by

- wb

I‘IOS W)= (_)
S( ) Z :2_| vy
FIG. 3. Dependence of the coupling constaﬁlﬁ1 [broken

M M E E
curves; Eq.(30)] and C, [solid curves; Eq(31)] on electron ve- X[Cim IM{t"}+ Cipy IM{t31, (29)

locity for different values of (,m) with 1=1,2 (left par) and | where the positive coefficients
=3 (right parl) as shown in the insets. Notice that)
=cM ., CE=CE_., andCli=0. oM _ 2my Al 2 30
m=+1) +1) Aim
D. Energy loss
N o and
The positive energy loss suffered by the fast electron
passing near the sphere can be related to the force exerted by E
the induced electric fielE™ acting on it as Clm_|(| +1)|y (31)

" depend exclusively on the ratiodc. The first values of\,
AEIOSS:f dtv- EM(r, ’t):f wdo 'Y w), (25 and B, [see Egs(A9) and(15)] are
0

A+_\F i B. \/1\2 1
where 10— ;(v/—c)z, 10~ ?(vlc)zy

T195 ) = if dtRele V. EM(r,,0)} (26 e ar 2
TW 11 1,-1 27T(vlc)2'y
is the so-called loss probability
Equation (26) can be divided into the contributions of Bpy=—B; 1=-— \[ iR
c

magnetic and electric modes,

The dependence di'°Yw) on both the sphere radius
and its dielectric functione(w) shows up only via the
velocity-independent scattering-matrix elements of the
coming from the magnetic and electric parts of the inducedphere for magnetic and electric componefitsandtF,
electric fieldL y™ and (=i/k)V XL yF, respectivelyI™'°S  gpectively(see Sec. Il € Sincel =0 does not contnbute to
can be calculated by inserting E@.6) into Eq.(3) and this  the loss, this term has been explicitly left out of the sum in
in turn into Eq. (26). Noticing that only the electric-field Eq. (29).
component along the direction of motidthe z axis herg Equation (29) has a form similar to its nonrelativistic
contributes to produce energy loss, using the results of Apcounterpart, first derived by Ferrell and EchenidU& In
pendix A, and making the substitutionL =vL,—~muv, one  both cases, the dependence on impact paranteierfully

Floss: FM,Ioss+ FE,Ioss

obtains contained inside the modified Bessel functidfg, which
behave exponentially at large distances.
= 1w wb Equation(29) explicitly separates the dependence on the
[Mlosg)=> > _Km<_) dielectric response of the sphere, fully contained in the scat-
=1 m=—1 7o? vy tering matriced,, from the dependence on the electron tra-

jectory. The latter enters in the coupling constafits,,

which depend exclusively on the electron velocity, and via

the impact-parameter dependent Bessel functions just noted.
Similarly, I'5'°5S can be calculated starting from E@.7)  This separation is general as long as the electron moves out-

and using similar technigues to those followed in Appendixside the sphere.

B to obtain Eq.(14), except that one has now (VXL) Very interestingly, for relatively small spheres, where

=(—iv/2)(d_L,—d,L_). One finds only low I's contribute significantly, the dependences on

Re[(A%)*eim“’Oﬂ“’ZO/vi =1 lr/IIMrﬁind}- (27)
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~ 10 —
E =
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2.0 1 1
0.3 04 0.5 0.6 0.7

03/(:)P
] FIG. 5. Energy-loss spectfd=T"% solid curves; Eq(28)]

FIG. 4. Energy-loss spectra as a function of energy rander  anq photon-emission specfi=T"" broken curves; Eq37)] for
electrons passing near a sphere under grazing incidéreeb a5 electron moving under the same conditions as in Fig. 4, except
=a; see Fig. 1. The loss probability has been calculated within a ih; the impact parameter is takbrr 1.1a (see Fig. 1, the sphere
fully relaywstlc_approa_cr[Eq_.(28)]. The spherg is described k_)y the adius isa=1.2/w, (a=157.8 A for Al), and the electron gas
Drude dielectric function given by Eq22) with zero damping. damping has been varied frony=0 (upper curvé up to 7
Different sphere radia have been considered, as shown in the:o.zwp (lower curve, as shown in the insetsy=0.07w,, for AD).

insets, ranging frona=0.1c/w, (a=13.2 A for Al; upper curve  consecutive curves are separated by a constant shift of 2 a.u. in
to a=2c/w, (a=263 A for Al; lower curvég in equal steps. The order to improve readability.

small inset shows the two extreme cases. Consecutive curves are
separated by a constant shift of 1 a.u. in order to improve readabil-

v rig- [ doro), ®

electron velocity and dielectric function are well separated ins studied in Figs. 9 and 10.
Eq. (29), so that there are no losses that are enhanced when
the Cherenkov conditionv{c)? Re{e}>1 is fulfiled, and E. Dipole approximation and nonrelativistic limit
therefore, no Cherenkov effect is expected for the case under - . . .

. . . . . In the limit of small sphere radius, the scattering-matrix
consideration, that is, electron trajectories external to the 20+1) E 241

o elements scale ag' ~ (ka) andtF~(ka)?*1. In par-

sphere. In thea—oo limit, Eq. (29) has to converge to the ticular
loss in front of a plane at a fixed distanice-a, where Cher- ’
enkov terms show up even for external trajectofieis that
limit, the contribution of higher-order terms becomes in- (1+1)(21+1) e—1
creasingly important, leading to mixing of the dependences ,E=
on both velocity and dielectric function and resulting in the

usual Cherenkov terms. o andt'<t{. Therefore, the leading terms in EQ9) corre-
The coefficientsC,, are represented in Fig. 3 as a func- gpond to electric modes with= 1. Keeping only those terms

tion of U/C for |=1—-3. It is clear that the contribution of and using the values (#‘I-*r—n and Blm given in the previous
magnetic modeébroken curvepis much smaller than that of section, one finds

their electric counterpart. Moreover, the dependence of the
latter with velocity is relatively smooth for typical STEM

I+ 3
(AN Terre k@7 ka<l @3

energies, though the low- and high-velocity limits show Cw? ob) 1 b
strong variations. o)== Kf(—> +—2K§(—”, ka<1,

The minor role played by magnetic modes in the coupling vy oYy vy 24
coefficients is combined with the smaller magnitude of the (34
magnetic scattering-matrix elements as compared with theshere
electric ones. This is shown in Fig. 2, where{tf}} [dotted
curves in Figs. @) and 2Zb), corresponding to damping
=0, and solid curves in Figs.(® and Zf), for dampingz c— 4a® [e-1
=0.07w,] is systematically smaller than Ktf}. The =M™z
smaller the sphere radius, the larger this effect. Actuaﬂfy,
take significant values only for large spheré., for a Using the Drude dielectric function defined by E@2),
>clw,) in the highe region, where the Bessel functions of taking the—0 limit, noticing that the plasma frequency is
Eq. (29 dramatically reduce the loss probability. related to the electron gas densitwia w;=4mn, and as-

The loss probability is represented in Figs. 4—8 for differ-suming that there is only one electron inside the electron gas
ent combinations of electron velocity, impact parameterthat defines the sphefee.,n=3/(4ma®)], one finds that the
sphere radius, and dielectric functions. Moreover, the intetotal energy loss as defined by E¢®5) and(34) is given by
grated loss probability, defined as the right-hand side of Eq.34) with C=2 and wzwp/\/§
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@ | ® N ]
(opa/c=0.2.

10F| b=L.1a
n/mp—»().m

X v/c=0.3-0.9]

w¥a) T (auw)

v/a) T (au.)

03 04 05 06 07 03 04 0.5 0.6 0.7 0.8
o/o m/oop

FIG. 6. Comparison between the results obtained from the relativistic tHeohygl curves; Eq(28)] and the nonrelativistic theory
[broken curves; Eq(35)] for electron energy-loss spectra obtained under the same conditions as in Fig. 4 with different combinations of
parameters: electron gas damping 0.07w, ; impact parameteb=1.1a; sphere radius,a/c=0.2, 0.5, 0.7, and 1 Higures(a), (b), (c),
and(d), respectivelya=26.3,65.8, 92.1, and 157.8 A in the care of]ADifferent electron velocities have been considered in each case
as shown in the insets.

(the latter is the dipolar mode of a nonrelativistic sphere  The results derived from Ed35) have been compared
This result coincides with the energy loss suffered by arwith the full relativistic calculation of Eq29) in Fig. 6.
electron moving near a unit charge subjected to a spring of
frequencyw,/+/3.2% In other words, this demonstrates that
the sphere responds like a dipole in t&<1 limit. Ill. DISCUSSION OF ELECTRON ENERGY LOSS
Notice that the relativistic effects in E¢34) are related to SPECTRA
kinematic factors ¢~ * factors, leaving the position of the
dipole resonance unchanged with respect to the nonrelativis- The natural oscillations of the sphere have a finite width
tic result(i.e., e+2=0). Therefore, the retardation effects even for real dielectric functionisee Fig. 2. In that case, the
within a small sphereKa<1) do not affect the resonance |oss probability takes nonzero values over extended regions
frequencies. of w, as Fig. 4 illustrates for different sphere radi(see
Equation(29) is thus a generalization of the dipole limit insetg in the case of grazing trajectoriése., b=a). The
represented by Eq34), and the Lorentz contraction of the sphere has been described by the Drude dielectric function
impact parameter by a factar is maintained. given by Eq.(22) taking =0, and the results have been
In the nonrelativistic limit, inserting EA10) into Eq.  scaled in order to make the picture valid for any valuexgf
(15) one obtainsB,,=2ilA,. Then, using Eqs(29), (30),  The figure shows how the position and width of the peaks
(31), and (A10), one finds that the contribution to the loss evolve with the sphere radius in the loss spectra. This is in
probability originating in magnetic and electric modes scaleagreement with the discussion of Fig. 2 above. Incidentally,
with ¢ asc? ~'tM andc? *tF, respectively. Then, noticing the surface modé=1 dominates the loss spectra for small
the scaling of the scattering matrix described at the beginsphere radiugssee upper curve in the ingetvhereas higher-
ning of this section, one finds that the contribution of mag-l modes show up as the radius increases. The approximate
netic modes vanishes in the nonrelativistic limit, whereas thexpression$23) and (24) for the complex dipole frequency
remaining electric modes contribute as work well up to w,a/v~1.2—-w; is directly connected to
half width at half maximum of thé=1 main feature in the

0 |

T105Y ) = 4_a E wa 2 | figure (i.e., the peaks of lowest enengy
a2 Simer | v (I+m)!(l—m)! When a finite damping is considered in the dielectric
function, the features of the loss spectra are broadened, and
,[ @b e—1 their width is approximately given by the radiative width
XKy o Im le+l+1)’ ka<l, v/e<l, (i.e., the value forp=0) plus the damping, as shown in Fig.

5 (solid curve$. Notice that the excitation of the different
(39 modes results in common broad structuresyaacreases.

as found by Ferrelet al!! Equations(33) and (A10) have The variation of the loss probability with electron velocity
been used in the derivation of E5). is analyzed in Fig. 6 for different spheres radius. The veloci-
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0.3 0.8
sio, |, (b) ] FIG. 8. Contribution to the energy-loss probability €',
0.0z =500 A ) solid curve$ and radiation emission probabilityT T broken
b=700 A curves coming from different multipoles for an electron moving
- E=100-200 keV Curves 1,234:1, =15 1 near a sphere of radies= 1.2c/ w, (a=157.8 A in thecase of A}
3 (e=0.550.70) 122 2;3{1 1 with impact parameten=1.1a and velocityv = 0.6c. The sphere is
: 2’4‘6j 1001;5 described by the Drude dielectric function with damping
= oo - =0.07w,. The different curves show the contribution of the first
N | max Values of the orbital momentum numbefThe contribution of
e 2 N T T N 1 magnetic mode@M) is shown in the inset. Notice that the probabil-
1 ity comes almost entirely from the contribution of electric modes.
0.0, 5 S — 25 %  a=157.8 A is remarkablgsee Fig. &), where the prob-
® V) ability has been multiplied by a factor of|.2

Figure 6 confirms that the validity of the nonrelativistic
FIG. 7. (8) Comparison between the loss probabilify=¢T"°% theory is confined to theya/c<1 andv/c<1 limit.
solid curves and the radiation emission probability € '™, bro- The case of Si@spheres has been considered as well in
ken curveg corresponding to a 300-ke¥™ passing at a distance of Fig. 7. This material presents a large band gap that is trans-
100 A from the surface of a SiGsphere for different values of the |ated into a region of nearly real dielectric function below 9
sphere radius ranging from=50 A to a=500 A as shown in eV and above the phonon losses, as shown in the inset of
the insets. The smaller plot shows the loss function for bulk,SiO Fig. 7(a). The small arrows indicate the inelastic threshold
The small arrows point to the energy below which the dielectricfor creation of electronic excitations in the material. Notice
function is real. Consecutive curves are separated by a constaghat the loss probability increases with the radius of the

ihif“gohozt a.u. in order to ng'rl(')tve rzadiﬁi"@ Loss p(rthpabil- _sphere in the transparency region. For the largest spheres
ty-:and photon-emission probability under the Same conaitions as iy qer consideration and within that frequency region, the
(a) for two different electron energidsee insets The contribution

of I=1 is given in separate curvésee legend of curve labglsn energy-loss probability is comparable in magnitude to its

which case the radiation emission probability cannot be separate\(ljaluet In thebabso:[gtlv\e; pﬁrt of the spelc_:tttrlum._gr']he ihape OJ.the
from the loss probability. spectrum above eV changes very littie with spnere radius,

and the largest variations are produced in the region imme-
ties under consideration are shown as labels attached to tioately below the inelastic threshold.

different curves. As the velocity of the electron increases, the Two different electron velocities have been considered in
scaled loss probability?I"'°Ya becomes larger and the rela- Fig. 7(b) in order to make clear that the origin of radiation
tive role of lowd modes is enhanced in all casese the emission under discussion is not connected to the Cherenkov
peak atw/w,~0.5 in Fig. @d)]. This result was expected effect: in the case of 100-keV electrons, the Cherenkov con-
from the velocity dependence of the external electron fielddition (v/c)®>Re{e}>1 is not satisfied foro<8.5 eV,
whose range of interaction isv y/w according to Eq(12),  where the dielectric function is nearly real; however, the
so that low+ modes, involving oscillations with a low num- Cherenkov condition is fulfilled for 200-keV electrons in the
ber of nodes? dominate at large velocities, for which the whole » range. Both velocities give rise to qualitatively
external potential becomes smoother. The results of the nosimilar spectra, allowing us to rule out the Cherenkov effect
relativistic calculationEq. (35)] are represented by broken as the origin of radiation for the currently investigated exter-
curves, and they are compared with the full relativistic re-nal trajectories. The figure illustrates as well the dominant
sults [Eg. (29)], shown by solid curves. Both calculations character of the dipolar mode in the law+egion.

agree relatively well for the smallest sphere radius under The contribution of different multipoles to the loss prob-
consideration, which in the case of aluminum corresponds tability is shown in Fig. 8. For the relatively large radius
a=26.3 A. However, fora=92.1 A [see Fig. €)] the under considerationai=157.8 A in the case of Alone
differences are already considerali®th in the position of needs to sum up tb=~15, in agreement with previous non-
the features and in their relative magnitude electron en- relativistic results The inset of the figure shows the contri-
ergies typical of STEMi.e.,v~0.5c). The discrepancy for bution of magnetic modefEq. (27)] on a different, much
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FIG. 9. Dependence of the total loss probabil#plid curves; see E¢32)] on the dampingy for spheres of different radiusee insets
described by a Drude dielectric function. Various electron velocities have been considered in each case as indicated in the labels accompa-
nying the different curves. The total photon-emission probability has also been included for comghrid@n curves The impact
parameter has been takbr 1.1a in all cases.

smaller scale; this permits us to conclude that most of thean be calculated by integrating the Poynting vector normal
loss originates in the excitation of electric modes, in goodto an arbitrarily large sphere centered around the target, that
agreement with the results extracted above from Figs. 2 ang,
3.

The total-loss probability, integrated in energy as shown C R
in Eq. (32), is represented in Figs. 9 and 10 for spheres AErad=4—f dtf dQ,r?[E(r,t)XH(r,t)]-r,
described by a Drude dielectric function and for $iO 7
spheres, respectively. The dependence of the total-loss promerer points to the surface of the large sphere and the
ability on the dampingy is analyzed in Fig. 9solid curve$, integral over the time has been included. Expressing the

where different sphere radius have been studieda/c  fg|ds in terms of their frequency components, one finds
=0.2, 0.6, 1, and 2 ina), (b), (c), and(d), respectively. a y P '

Various velocities have been also considefsee curve la- -
belg. The impact parameter has been taken proportional to AEfadzf wd“’f dQ, I w,Q,),
the sphere radiugy=1.1a. The probability shows a smooth 0
dependence om in all cases. It can take relatively large
values even for realistic dampings. Moreover, the probabilityVhere
decreases and becomes featureless as the velocity increases.

Figure 10 shows the dependence of the total-loss prob- a
ability (solid curve$ on impact parameter for different com- I'Y,Q,)=
binations of sphere radius and electron velocities. An overall
exponential decay witt is observed, coming from thi,
function of Eq.(29). A decreasing trend with increasing ve-
locity observed in Fig. 9 is observed here for the smalles
sphere under consideratioa€50 A in the upper pajt and . . :

: i . . calculated in previous sections.

also in the intermediate size spher@=(200 A) for low L X ' .
values ofb/a. However, an increase in the probability with I_n t_her—wo Im_m, qnly the induced fields C.Onmb(lit)e to the
increasing velocity is obtained in the rest of the cases. A(aFjl"j‘t'i(zp- In this limit, one can approximate; "’ (kr)
more detailed analysis of the probability spectra indicates= € /Kr in Eqs.(16) and(17), andV can be substituted
that this behavior is governed by the radiative losses belowy ikr in the induced part of the fields given by E¢8) and
the inelastic threshold, which become important for large(5). Substituting the resulting expression into E§6) and

2

77 RE[E(0)XH(-w)]-1}  (36)

is the probability of emitting a photon of energy per unit
energy range and unit solid angle around the direcfipn
‘Equation(36) can be computed with the help of the fields

sphere radius and larg#a ratios. integrating over angles, one firfds
IV. RADIATION EMISSION INDUCED BY FAST i .
ELECTRONS PASSING NEAR A HOMOGENEOUS I d(w)=f dQ, I w,0,)

SPHERE |

The coupling of the electron with radiative modes of the = L > D F1)[|ghind2 4| yEiind |2y
sphere gives rise to radiation emission. The radiated energy A7?k3 =1 m=—1
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damping, so that in the competition to absorb energy out of
the electron motion the dissipative modes of the sphere
dominates for largey. Very interestingly, some of the modes
that are present in the loss probability are nearly absent in the
photon emission probability(see the features neaw
~0.650,, in the curve corresponding t9=0.0lw,), indi-
cating the different charactéeither dissipative or radiatiye

of the different modes.

—_
I3 Below the inelastic threshold.e., in the region of real
- SN 35 dielectric function all losses in Si@ go into radiation as
LF """"" = shown in Fig. 7(broken curvep This figure illustrates as
10‘E= 3/0_03/ ] well how I'"® increases with increasing sphere radius.,
o when the relevant condition for the emergence of retardation
R e ="'_ effectswal/c>1 is fulfilled).
3 The decomposition of ™ into the contributions coming
10°E form differentl’s is shown in Fig. 8broken curveps Notice
10_3 that the mode$=1 andl =2 give the dominant contribution
to the radiation emission, in contrast to the loss probability,
10E - for which higher values of still contribute significantly.
E v/c=0.3 L . . .
I e Therefore, the dissipative character is dominant with respect
1(1)'00 1.25 1.50 175 2.00 to the radiative one in high-modes. This can be qualita-
tively understood using the following argument: the number
b/a of nodes of the charge-density perturbation for the different

modes increases with so that strongly-interacting regions

FIG. 10. Dependence of the total loss probabilplid curves o gpposite charge are spatially closer for larger valuek of
on the ratiob/a (impact parameter to sphere radidsr SiO, a4 hence, retardation effects, including the emergent radia-
spheres of different radiu$0, 200, and 800 A, as shown in the ;e widths, are weaker. This conclusion is also supported by

insets. Various electron velocities have been considered in eadfhe widths of the electric modes as observed in the scattering
case, as indicated in the labels accompanying the different CUIVes, - trix elementssee Fig. 2in their evolution froml =1 to
The total photon-emission probability has also been included foi:Z ’

comparison(broken curves The total photon-emission probability converges to the

total-loss probability in the limit of vanishing damping, as

shown in Fig. 9. However, the formébroken curvesde-

creases with increasing damping, though it can still retain a

1 wb measurable value ~0.5% _for 100-keV eIectr_ons,b

> > Kr2n<—)[c|'\fln|t|M|2+ C|Em|t|E|2]- =1.1a, a=c/w,, and dampingy=0.07w, appropriate for

Cw (=1 m=-1 vy Al). For finite values of the damping, the total photon-
(37 emission probability shows a pronounced increase with in-

creasing sphere radius.

For real(either positive or negatiyedielectric functions, In the case of large SiOspheres, the total photon-
using basic properties of the spherical Bessel functions imission probability converges quickly to the total-loss prob-
Egs. (20 and (21), one finds [t}"|*>=Im{t"} and [t7[*>  apility with increasing impact parameter, as shown in the
=Im{t}. Hence, the radiation emission probabilitiZg.  lower part of Fig. 10. This is not true in the case of small
(37)] coincides with the loss probabilityEqg. (29)] in that  spheregupper part, where retardation effects are not impor-
case, clearly indicating that the medium is unable to absorlgant and the photon-emission probabiliroken curveglies
any energy when the absorptive or imaginary part of themuch lower than the loss probabilitgolid curves.
dielectric function is zero.

For complex dielectric functions, one hi§|?<Im{t}
and [t|2<Im{tM}, as shown in Figs. @)-2(f), where the
Drude dielectric function has been used with=0.07w, . The Maxwell equations have been analytically solved for
This result is consistent with the requirement tHafY an electron moving with constant velocity near a homoge-
<T''°S that is, the energy lost in the form of radiation has toneous sphere. This has permitted us to obtain an analytical
be always smaller than the energy lost by the electron. expression for the loss probability as a function of the elec-

Now, Fig. 4, which corresponded to the loss probabilitytron impact parametds. The resulfEq. (29)] looks similar
for a real Drude dielectric function, can be thought of asto its nonrelativistic counterpatf,and the impact-parameter
showing the photon emission probability. dependence is subject to a Lorentz contraction via the func-

The effect of electron gas damping on the radiation- tion K,(wb/vy). The peaks in the loss spectra are shifted
emission probability is shown in Fig. ®roken curves The  with respect to the nonrelativistic case. Moreover, the modes
figure confirms thaf ™™ is always smaller thaf'***and both  have a natural width that produces a nonzero energy-loss
guantities converge to the same value in the>0 limit. probability spread over a finite range of energies even when
Moreover, the radiation losses decrease with increasinthe dielectric function of the sphere is real. Explicit approxi-

Finally, using Eqs(18) and(19), the photon emission prob-
ability reduces to

o |

Ir'aq @)=

V. CONCLUSIONS
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mate expressions are given for the dipole-complex eigenfre- M- (ro)=Mi(b,0,00e Meoe¥ivz0/, (A2)

guency in the case of a real Drude dielectric functisae

Egs.(23) and(24)]. where 0, ¢q,2) are the cylindrical coordinates of,, and
It has been shown that most of the energy losses originate

in the excitation of electric modes, and magnetic modes are M (b,0,00=(~1)"M{"(b,0,0).

nearly negligible. Furthermore, the bulk of the energy loss L )
comes from lowk modes in spheres of up to several hundred! Nerefore, it is enough to consider the case-0 and ¢o
A in diameter. =2=0. o . .
Part of the energy loss goes into radiation, due to couplin Our starting p0|nt.|s the time Fourier transform of the
with radiative modes of the sphere. In particular, when thd etarded Green functidh[see Eq.(9)]

dielectric function is real, the energy loss and the radiated - (0020 o

energy coincide, that is, the medium cannot absorb any enf dtetiot _ _Ko<ﬂm etiwzly
ergy. This is the case of some materials within certain fre- Ir=(b,0pt)| v vy '
guency ranges. As an example, the case of, Sikharacter- (A3)

ized by a large absorption gap, has been studied in detail. wherer = (x,y.2),y= 11— 82 and B=kv/w. Again, the

For absor_ptive r_nedia, _the presence of a finite imagi.n.anéquare root is taken such that{R$>0. (Notice that when
part in the dielectric function increases the loss probablhty,the electron moves in vacuum. one HaSw/c s0 that3

but reduces the photon-emission probability, since the elec- L .
> A o ... ~=vlc and y are the standard relativistic-kinematic factors.
tromagnetic field originating in the excitation of radiative

modes is partly dissipated in the sphere before it escapes ﬁse"}gf:_hheaﬁgpggzlz? E‘:;Xg)irgf&zgzc“on given in 8,
the form of radiation.

Judging from the examples offered in this paper, the prob- o |
ability of emitting radiation induced by the passage of fast 47rk2 E i1(KDY,m(Q,)M5(b,0,0)
electrons is predicted to be large enough to be experimen- =0 m=—1 MM

tally detected, leading to the possibility of a microscopy o ) ) _
technique based upon the measurement of electron-inducd®f " <b. Multiplying both this expression and the right-hand
photon-emission spectfa. side of Eq.(A3) by Yj,(€2,) and integrating over(),

=(6,¢), one obtains

ACKNOWLEDGMENTS 1
The author wants to thank A. Howie and P. M. Echenique M m(b,0,0)= 2mkv j,(Kkr) dQ Y7y ()
who, besides suggesting this paper, contributed to it with

many critical revisions of the manuscript and helpful and O e\ L
enjoyable discussions. Help and support from the Departa- %Ko E (Xx=b)7+y? |e”1=r. (Ad)
mento de Educacio del Gobierno Vasco and the Basque
Country University are gratefully acknowledged. The integral over the azimuthal angle can be done by
separating the dependence of the spherical harmonig on
APPENDIX A: COUPLING INTEGRALS and using the relatici

This appendix is devoted to derive an analytical solution - ‘ o

of the integral J d(pe_'m‘PKo(— (x—b)?+y?
-7 vy
Mltm(rO):J dtetiwth|(+)(k|r0+Vt|)Y|*m(Qr0+vt)| :Zﬂ_lm(w_R) Km<w_b) (R$b)
(A1) vy vy

where h{*)(x) is the spherical Hankel functich,and we WwhereR=\x?+y?. Then, Eq.(A4) reduces to
assumew>0.

This integral represents the electromagnetic coupling be-
tween a fast electron moving inside a homogeneous medium
with constant velocityw and the multipole component,(m)
of the Green function of the medium, as written in E®. « fl dul (“’_R) etioZopM( ) (AB)
and (10). Here,r, represents the electron-impact parameter -1 #lm vy P
with respect to the origin. The medium is assumed to be
described by a frequency-dependent dielectric functiowhere ;= [ (21 +1)/(4)](I—m)!/(1+m)! is the coef-
eo(w), so thatk=(w/c) /e, is complex in general, and the ficient that accompanies the Legendre functi®ffi to form
square root is taken to yield Ik} >0 (i.e., the electromag- the spherical harmonicR=r\1—pu?, z=ru, u=cos,
netic field is assumed to vanish at infinity and the dependence on impact paramiterfully contained

The velocityv will be assumed to be parallel to thexis.  in the modified Bessel functionts,,(wb/v ).

The solution for arbitrarily oriented velocity vectors can be  The right-hand side of EQA5) must be independent of
easily obtained from the latter case by using rotation matriin particular, in ther—0 limit the spherical Bessel function
ces for spherical harmonicé$ Moreover, ji(kr) goes like kr)'/(21+1)!!, leading to an apparent di-

) m Km(owb/
Mim(b,0,0)=(— 1)m% %
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vergence that is compensated by the vanishing integral. Sub-

stituting |, and expf-imwz/v) by their Taylor expansions
aroundr =0, one finds

(_l)m dul w_R iin/va
mliml 5|8 1 (4)

o =] i S*]—
; s (=)

m 5=1 21(s—)I[(j —m)/2]'[(j+m)/2]!

S

w_r‘) i|'m
jis—iv

v oyl

where the sum ovey is restricted to everj+m integral

numbers and

X (A6)

Im
III
12

1 o
—(—1)mf_ldﬂ(1—MZ)'l’ZM'ZPI“(M)- (A7)

Equation (A7) can be efficiently evaluated using a well-
known numerically stable ascending recurrence relation in

for the Legendre functior®, leading to

(|—m)|:;?2=(2|— DM (l+m=1)12m

i,ipt+l i1is

for I>m. The starting values of this recurrence af}?‘;'m
=0 and
ip+m+2 i,+1

jmm_ (=D™2m-1)!'B > ) i, even
12 i
0, i, odd,
whereB is the beta functiori® and [ 2™=0.

Upon inspection, one finds thaft ;=0 for s<| andj
=m. That is, only the terms=1 survive in Eq.(A6). Hence,
ther—0 limit of Eq. (A5) finally results in

M,fn(b,o,O):f dte*th{ *)[K| (0,00 1)[1Yml Qb.0pt)]

B Afan wb A8
- @ m vy 1] ( )
where
.1 ci™*
A|m:F j:m 'y] 1 (A9)

e _ (=) Tam(21+ )N m
b2l = G- my2) G+ my2)

and the sum is restricted to eveit m integral numbers. The
coefficientsAfm depend orw via the dielectric functiorisee
the definition of3 andy above, so that they are independent
of @ when the electron moves in vacuum. Of coursg,
=(Am)*.
In the nonrelativistic limitk—0, 8—0, y—1, and

1 (x)!Tme2r+1)n

B ym2I+ 1) (I —m)I(I+m)!

Then, multiplying Eq.(A8) by k'"%/(21—
the k— 0 limit, one finds

* _
Im™—

(A10)

1)!! and taking
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Fiwt
J'dtWY'm(Q(bnm))
_ (=) *m21+1) o . (w_b)
_\/77(2|+1)(|_m)|(|+m)| v|+1 m o |

which leads to the well-known nonrelativistic result for the
electron energy-loss probability in the case of an external
trajectory, as found by Ferredit al!! (see Sec. Il E

APPENDIX B: THE ELECTRIC SCALAR FUNCTION

The derivation of Eq(14) is outlined in this appendix.
Inserting Eq.(11) into Eqg. (6) and noticing that I{ X V)
-V=0, one finds

EE

C & s L2

wE,ex((r) _

XLV (LXV)]J1(KO) Y 1m(£2r) Pim -
The operator in this expression can be written

(B1)

i
2 (
where d. =dldx*idldy andL.=L,*iL,. The latter acts

only on the angular part of EdB1) (i.e., on the spherical
harmonic$ according t4°

LoYim=vAF=m(I=m+21)Y| neq.

v
V-(LXV)=—(Lyd_—L_da,),

(B2)

The action ofd.. in Eg. (B1) can be studied by realizing
that 9. Go(r —ry)=—3°Go(r—r,), whered’ involves de-
rivatives with respect ta, (the dependence ory is con-
tained in¢,,,) rather tharr [see Eq(9)]. Now, the relevant
identities argsee Eq.(12)]

3 [Km(ab)e™ M0 = — aK .y (ab)e™! M= Do (B3)
and
P2 [Km(ab)e™™0]=— aK oy (ab)e (M D0, (B4)

easily derived by using the recurrence relations of the modi-
fied Bessel functions.

Finally, applying Eqs(B2), (B3), and (B4) to Eqgs.(12)
and (B1), and making the substitutioh®—|(I+1), one
finds

—2mik < A Cion s
vEen = Cy 2 E_ |(|+1)“("'r)e o
X[ J(I=m+1)(1+m)

x K bY Q,)e (M Deo
m—1 Iml( )

—J(I+m+1)(1-m)

wb
><Km-*—l( )YI m-*—l(Q ) (m+1)eo

Now, the summation indem has to be rearranged in order to
collect terms that multiply to the same spherical harmonic
together. Finally, comparison with E(B) yields Eq.(14).
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